visit
Every Shamir sharing scheme has a total number of shares and a threshold. The threshold is the number of shares required to reconstruct the original secret. With five shares and a threshold of three, only three of the five shares need to be used to calculate the original secret.
One of the fundamental mathematical properties used in Shamir’s secret sharing is the fact that it takes k points to define a polynomial of degree k – 1. For example:
Only one line can be drawn between two pointsOnly one possible parabola crosses through the same three pointsOnly one cubic curve passes through the same four pointsAn infinite number of lines can be drawn through the same pointAn infinite number of parabolas can be drawn through the same two pointsLet us construct a scheme to share our secret 1954 (S) with 4 (n) shares and a threshold of 3 (k).
We randomly choose k – 1 positive integers, so in our case, 2 positive integers. We randomly choose 43 and 12.
We build a polynomial of the form<code style="box-sizing: border-box; font-family: Consolas, "Andale Mono WT", "Andale Mono", "Lucida Console", "Lucida Sans Typewriter", "DejaVu Sans Mono", "Bitstream Vera Sans Mono", "Liberation Mono", "Nimbus Mono L", Monaco, "Courier New", Courier, monospace; color: rgb(255, 255, 255); background-color: transparent; border: 0px; padding: 0px; font-size: 0.85em; border-radius: 3px;">y = a0 + a1*x + a2*x^2</code>
<code style="box-sizing: border-box; font-family: Consolas, "Andale Mono WT", "Andale Mono", "Lucida Console", "Lucida Sans Typewriter", "DejaVu Sans Mono", "Bitstream Vera Sans Mono", "Liberation Mono", "Nimbus Mono L", Monaco, "Courier New", Courier, monospace; color: rgb(255, 255, 255); background-color: transparent; border: 0px; padding: 0px; font-size: 0.85em; border-radius: 3px;">y = 1954 + 43x + 12x^2</code>
Share 1 – (x, y) where x = 1
y = 1954 + 43*1 + 12*1^2 = 2009(1, 2009)Share 2 – (x, y) where x = 2
y = 1954 + 43*2 + 12*2^2 = 2088(2, 2088)Share 3 – (x, y) where x = 3
y = 1954 + 43*3 + 12*3^2 = 2191(3, 2191)Share 4 – (x, y) where x = 4
y = 1954 + 43*4 + 12*4^2 = 2318(4, 2318)