visit
AI and real-time monitoring
The ability of AI to monitor operations in real time offers a number
of benefits, including “troubleshooting production bottlenecks, tracking scrap rates, meeting customer delivery dates, and more,” as writes in Forbes. Use of AI in this scenario also assists
with gathering data that can then be used to develop other machine learning models that may be supervised, or unsupervised, in their use.
AI adoption trends
The recent Cap Gemini report Scaling AI in Manufacturing Operations: A Practitioners Perspective analyses the primary ways in which
manufacturers have adopted AI over the last few months – so let’s take a look at a few of them.
Some 29% of manufacturers are using AI for machinery maintenance and
production, and this has proved to be the most popular use. Why? Because AI tools can alert management about when machinery is about to fail in some way. For example, General Motors analyzes images from cameras mounted on assembly robots, to spot signs and indications of failing robotic components with the help of its supplier.
Phone manufacturer Nokia has introduced a video app that uses machine learning to alert an assembly operator if there are inconsistencies in the production process. Furthermore, the issues are spotted in real time.
AI-based image recognition software and technologies are being used for real-time in-line inspection. This has been adopted by Audi, which installed an image recognition system based on deep learning at its Ingolstadt press shop.AI is also being used by the French Danone Group to deliver accurate forecasts of demand for its products. They're using machine learning to improve planning coordination across marketing, sales, account management, supply chain, and finance, and this has led to a 30% reduction in lost sales and a 50% reduction in demand planners' workload.Machine learning tools are also being deployed in the maintenance of high-speed rail lines across Europe. Thales SA has developed an AI algorithm to predict potential problems and identify when specific parts need to be replaced, which has proved to be successful as the rail industry has achieved zero unplanned shutdowns.There are many more examples, and Columbus’ article has a number of excellent references you may wish to read if you are interested in how AI and machine learning is going to improve manufacturing industries now and in the future.