visit
Since new-gen tech has enabled companies to mine large sets of structured and unstructured data, the idea of becoming a data-driven company has become the preoccupation of many executives.
Predicting new market trends, enhancing security, understanding customer behavior – in a data-driven company, big data analytics eliminate the guesswork and allow the executive teams to take calculated risks when it comes to making business-critical decisions.Let's review what it takes to build a data-savvy brand and how to instill data analytics and/or data science in your company's DNA to better meet your business goals.
1) Being ready to invest in working with data: capturing data, storing, processing, and analyzing it requires complex data analytic tools that run on top of advanced infrastructure. A data-driven culture embraces digital transformation and is ready to invest time and money into working with data.
2) Being ready to listen to data: in a data-driven culture, people are ready to listen to data before making important decisions. They are ready to align their decisions to insights derived via data mining, as opposed to cliches, familiar patterns, and emotionally charged opinions.
3) Being capable of reading data: mining data for insights requires analytical skills. Even though most of today’s big data apps will present data in understandable and readable formats, core decision-makers should be able to read these graphs and diagrams and interpret them correctly. Misinterpretations may cost your business dearly – the reputation and revenue are at stake if your decisions take the wrong turn.
4) Being able to trust data: as much as data-driven cultures rely on data, they do not rely on it blindly. If a manager says s/he would rather rely on their firsthand experience instead of analytics reports, they're not necessarily wrong. What if the analysts have overlooked one or several vital factors? Data analysis doesn’t put human experience off counts: it's capable of engaging in constructive dialogue that matters.
Step 1: Retrieving existing data
The first issue you are likely to come across is the lack of data. Rest assured, though, your back office infrastructure already has loads of it stored in disparate databases and CRMs. Even before you start gathering metrics using advanced tools and sensors, you already have something you can start with. Retrieving this data may pose a real challenge: those old databases were built without considering that someone would want to extract data for analysis.Step 2: Identifying the data you need
Having extracted the existing data, you are ready to categorize it and identify the data gaps you need to fill by collecting new metrics. The tricky part about capturing data is only collecting the data you need. One more thing you should take into account if you’re working with data, is compliance with privacy regulations such as, for example, GDPR in the EU. All data you collect for analysis should only serve your business purposes.Step 3. Decide on optimal data analytics toolset
Now that you have retrieved existing data, and identified the full range of metrics, you will analyze to drive your business forward, decide on an optimal data analytics toolset. Depending on your organization type, the tools may differ: from simple and easily accessible ones like Google Analytics to complex enterprise-grade systems like Splunk, Hadoop, or Cloudera. For a medium-sized company, tools like Google Reporting API and HotJar may be enough for frontend analytics and basic marketing needs. Today, data analytics vendors offer a wide range of tools for data mining, engineering, and warehousing.
Step 4. Allocate IT infrastructure capacities for storing and processing data
The data you collect will place high demands on an underlying IT infrastructure. You need to identify where you will store data; also, if you plan to run sophisticated enterprise-grade big data apps, they will require computing capacities for data processing and analysis. You may have to upgrade your existing infrastructure if you want to keep all of your data operations in-house or rent cloud capacities for your data analytics projects.Other difficulties involve:
Data pools, data lakes, and data warehouses
Other growing pains you are likely to experience on your way to becoming a data-savvy business stem from the fact that the data you collect often resides in disparate databases and repositories. Data scientists and analysts usually know how to work with some of them (like, for example, SQL), and are completely unfamiliar with the rest. Comparing the data from these databases will usually pose a particular difficulty. For example, you may want to compare the data on website users browsing behavior with their customer activity. This will require synchronizing data from Google Analytics with CRM data. Usually, Data Warehouse Systems (DWS) will offer solutions to this problem by collecting data from different pools into a more extensive data lake. At this stage, most companies recognize the importance of hiring data engineers to work on data infrastructure and DWS development. Hiring qualified experts, though, is yet another challenge.