visit
pip3 install pycryptodomex
Now we create a simple encrypt(plain_text, password) function. This function uses the password to encrypt the plain text. Therefore, anyone with access to the encrypted text and the password will be able to decrypt it.
def encrypt(plain_text, password):
# generate a random salt
salt = get_random_bytes(AES.block_size)
# use the Scrypt KDF to get a private key from the password
private_key = hashlib.scrypt(
password.encode(), salt=salt, n=2**14, r=8, p=1, dklen=32)
# create cipher config
cipher_config = AES.new(private_key, AES.MODE_GCM)
# return a dictionary with the encrypted text
cipher_text, tag = cipher_config.encrypt_and_digest(bytes(plain_text, 'utf-8'))
return {
'cipher_text': b64encode(cipher_text).decode('utf-8'),
'salt': b64encode(salt).decode('utf-8'),
'nonce': b64encode(cipher_config.nonce).decode('utf-8'),
'tag': b64encode(tag).decode('utf-8')
}
Notes on encrypt() function
def decrypt(enc_dict, password):
# decode the dictionary entries from base64
salt = b64decode(enc_dict['salt'])
cipher_text = b64decode(enc_dict['cipher_text'])
nonce = b64decode(enc_dict['nonce'])
tag = b64decode(enc_dict['tag'])
# generate the private key from the password and salt
private_key = hashlib.scrypt(
password.encode(), salt=salt, n=2**14, r=8, p=1, dklen=32)
# create the cipher config
cipher = AES.new(private_key, AES.MODE_GCM, nonce=nonce)
# decrypt the cipher text
decrypted = cipher.decrypt_and_verify(cipher_text, tag)
return decrypted
Notes on decrypt() function
The decrypt() function needs the same salt, nonce, and tag that we used for encryption. We used a dictionary for convenience in parsing, but if we instead wanted one string of ciphertext we could have used a scheme like salt.nonce.tag.cipher_textThe configuration parameters on the Scrypt and AES functions need to be the same as the encrypt function.
# AES 256 encryption/decryption using pycryptodome library
from base64 import b64encode, b64decode
import hashlib
from Cryptodome.Cipher import AES
import os
from Cryptodome.Random import get_random_bytes
def encrypt(plain_text, password):
# generate a random salt
salt = get_random_bytes(AES.block_size)
# use the Scrypt KDF to get a private key from the password
private_key = hashlib.scrypt(
password.encode(), salt=salt, n=2**14, r=8, p=1, dklen=32)
# create cipher config
cipher_config = AES.new(private_key, AES.MODE_GCM)
# return a dictionary with the encrypted text
cipher_text, tag = cipher_config.encrypt_and_digest(bytes(plain_text, 'utf-8'))
return {
'cipher_text': b64encode(cipher_text).decode('utf-8'),
'salt': b64encode(salt).decode('utf-8'),
'nonce': b64encode(cipher_config.nonce).decode('utf-8'),
'tag': b64encode(tag).decode('utf-8')
}
def decrypt(enc_dict, password):
# decode the dictionary entries from base64
salt = b64decode(enc_dict['salt'])
cipher_text = b64decode(enc_dict['cipher_text'])
nonce = b64decode(enc_dict['nonce'])
tag = b64decode(enc_dict['tag'])
# generate the private key from the password and salt
private_key = hashlib.scrypt(
password.encode(), salt=salt, n=2**14, r=8, p=1, dklen=32)
# create the cipher config
cipher = AES.new(private_key, AES.MODE_GCM, nonce=nonce)
# decrypt the cipher text
decrypted = cipher.decrypt_and_verify(cipher_text, tag)
return decrypted
def main():
password = input("Password: ")
# First let us encrypt secret message
encrypted = encrypt("The secretest message here", password)
print(encrypted)
# Let us decrypt using our original password
decrypted = decrypt(encrypted, password)
print(bytes.decode(decrypted))
main()