Les ensembles de données Torchvision sont des collections d'ensembles de données populaires couramment utilisés en vision par ordinateur pour développer et tester des modèles d'apprentissage automatique. Avec les ensembles de données torchvision, les développeurs peuvent former et tester leurs modèles d'apprentissage automatique sur une gamme de tâches, telles que la classification d'images, la détection d'objets et la segmentation.
Pour accéder à ce jeu de données, vous pouvez le télécharger directement depuis
import torchvision.datasets as datasets # Load the training dataset train_dataset = datasets.MNIST(root='data/', train=True, transform=None, download=True) # Load the testing dataset test_dataset = datasets.MNIST(root='data/', train=False, transform=None, download=True)
Code pour charger le jeu de données MNIST à l'aide du package PyTorch torchvision. Extrait de le 20/3/2023 .
Ce jeu de données peut être téléchargé à partir de
import torch import torchvision import torchvision.transforms as transforms transform = transforms.Compose( [transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform) testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform) trainloader = torch.utils.data.DataLoader(trainset, batch_size=4, shuffle=True, num_workers=2) testloader = torch.utils.data.DataLoader(testset, batch_size=4, shuffle=False, num_workers=2)
Code pour charger l'ensemble de données CIFAR-10 à l'aide du package PyTorch torchvision. Extrait de le 20/3/2023 .
Pour télécharger l'ensemble de données torchvision de Kaggle, veuillez visiter le Kaggle
import torchvision.datasets as datasets import torchvision.transforms as transforms # Define transform to normalize data transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) ]) # Load CIFAR-100 train and test datasets trainset = datasets.CIFAR100(root='./data', train=True, download=True, transform=transform) testset = datasets.CIFAR100(root='./data', train=False, download=True, transform=transform) # Create data loaders for train and test datasets trainloader = torch.utils.data.DataLoader(trainset, batch_size=64, shuffle=True) testloader = torch.utils.data.DataLoader(testset, batch_size=64, shuffle=False)
Code pour charger l'ensemble de données CIFAR-100 à l'aide du package PyTorch torchvision. Extrait de le 20/3/2023 .
Pour télécharger ce jeu de données torchvision, vous devez visiter le
import torchvision.datasets as datasets import torchvision.transforms as transforms # Set the path to the ImageNet dataset on your machine data_path = "/path/to/imagenet" # Create the ImageNet dataset object with custom options imagenet_train = datasets.ImageNet( root=data_path, split='train', transform=transforms.Compose([ transforms.Resize(256), transforms.RandomCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]), download=False ) imagenet_val = datasets.ImageNet( root=data_path, split='val', transform=transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]), download=False ) # Print the number of images in the training and validation sets print("Number of images in the training set:", len(imagenet_train)) print("Number of images in the validation set:", len(imagenet_val))
Code pour charger le jeu de données ImageNet à l'aide du package PyTorch torchvision. Extrait de le 21/3/2023 .
Pour télécharger cet ensemble de données torchvision, veuillez visiter le
import torch from torchvision import datasets, transforms # Define transformation transform = transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) # Load training dataset train_dataset = datasets.CocoDetection(root='/path/to/dataset/train2017', annFile='/path/to/dataset/annotations/instances_train2017.json', transform=transform) train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=32, shuffle=True) # Load validation dataset val_dataset = datasets.CocoDetection(root='/path/to/dataset/val2017', annFile='/path/to/dataset/annotations/instances_val2017.json', transform=transform) val_loader = torch.utils.data.DataLoader(val_dataset, batch_size=32, shuffle=False)
Code pour charger le jeu de données MS Coco à l'aide du package PyTorch torchvision. Extrait de le 21/3/2023 .
Ce jeu de données torchvision peut être téléchargé à partir de
import torch import torchvision import torchvision.transforms as transforms # Define transformations transform = transforms.Compose( [transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))]) # Load the dataset trainset = torchvision.datasets.FashionMNIST(root='./data', train=True, download=True, transform=transform) testset = torchvision.datasets.FashionMNIST(root='./data', train=False, download=True, transform=transform) # Create data loaders trainloader = torch.utils.data.DataLoader(trainset, batch_size=4, shuffle=True, num_workers=2) testloader = torch.utils.data.DataLoader(testset, batch_size=4, shuffle=False, num_workers=2)
Code pour charger le jeu de données Fashion-MNIST à l'aide du package PyTorch torchvision. Extrait de le 21/3/2023 .
Pour télécharger ce jeu de données torchvision, vous pouvez vous rendre sur
import torchvision import torch # Load the train and test sets train_set = torchvision.datasets.SVHN(root='./data', split='train', download=True, transform=torchvision.transforms.ToTensor()) test_set = torchvision.datasets.SVHN(root='./data', split='test', download=True, transform=torchvision.transforms.ToTensor()) # Create data loaders train_loader = torch.utils.data.DataLoader(train_set, batch_size=64, shuffle=True) test_loader = torch.utils.data.DataLoader(test_set, batch_size=64, shuffle=False)
Code pour charger le jeu de données SVHN à l'aide du package PyTorch torchvision. Extrait de le 22/3/2023 .
Pour accéder à ce jeu de données, vous pouvez le télécharger directement depuis
import torchvision.datasets as datasets import torchvision.transforms as transforms # Define the transformation to apply to the data transform = transforms.Compose([ transforms.ToTensor(), # Convert PIL image to PyTorch tensor transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) # Normalize the data ]) # Load the STL-10 dataset train_dataset = datasets.STL10(root='./data', split='train', download=True, transform=transform) test_dataset = datasets.STL10(root='./data', split='test', download=True, transform=transform)
Code pour charger le jeu de données STL-10 à l'aide du package PyTorch torchvision. Extrait de le 22/3/2023 .
Vous pouvez télécharger ce jeu de données sur
import torchvision.datasets as datasets import torchvision.transforms as transforms transform = transforms.Compose([ transforms.CenterCrop(178), transforms.Resize(128), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ]) celeba_dataset = datasets.CelebA(root='./data', split='train', transform=transform, download=True)
Code pour charger l'ensemble de données CelebA à l'aide du package PyTorch torchvision. Extrait de le 22/3/2023 .
Pour accéder au jeu de données récent, vous pouvez télécharger à partir du
import torch import torchvision from torchvision import transforms # Define transformations to apply to the images transform = transforms.Compose([ transforms.Resize((224, 224)), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) # Load the train and validation datasets train_dataset = torchvision.datasets.VOCDetection(root='./data', year='2007', image_set='train', transform=transform) val_dataset = torchvision.datasets.VOCDetection(root='./data', year='2007', image_set='val', transform=transform) # Create data loaders train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=32, shuffle=True) val_loader = torch.utils.data.DataLoader(val_dataset, batch_size=32, shuffle=False)
Code pour charger l'ensemble de données PASCAL VOC à l'aide du package PyTorch torchvision. Extrait de le 22/3/2023 .
Pour accéder à cet ensemble de données, vous pouvez utiliser
import torch import torchvision from torchvision import transforms # Define transformations to apply to the images transform = transforms.Compose([ transforms.Resize((224, 224)), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) # Load the train and validation datasets train_dataset = torchvision.datasets.Places365(root='./data', split='train-standard', transform=transform) val_dataset = torchvision.datasets.Places365(root='./data', split='val', transform=transform) # Create data loaders train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=32, shuffle=True) val_loader = torch.utils.data.DataLoader(val_dataset, batch_size=32, shuffle=False)
Code pour charger l'ensemble de données Places365 à l'aide du package PyTorch torchvision. Extrait de le 22/3/2023 .
L'image principale de cet article a été générée via le modèle AI Stable Diffusion de HackerNoon en utilisant l'invite "des milliers d'images organisées ensemble dans de petits cadres".
Plus de listes d'ensembles de données :