Piyasa yapıcılığıyla ilgili önceki makalemde geleneksel finansal piyasalarda piyasa yapıcılığı mekanizmalarını ve stratejilerini araştırdık. Bu bilgilerden yola çıkarak bu makale, Uniswap V3 bağlamında akıllı likidite tedariği için yenilikçi bir çerçeve sunmaktadır. Önceki araştırmamızda da belirtildiği gibi amacımız, merkezi olmayan finansta ( DeFi) piyasa dinamikleri ve likidite yönetimi anlayışımızı, özellikle Akıllı Likidite Tedarik Çerçevesinin geliştirilmesi yoluyla genişletmekti.
Eyaletler: Eyaletler, varlık fiyatları, işlem hacimleri ve diğer ilgili değişkenler dahil olmak üzere mevcut piyasa koşullarını temsil eder.
Eylemler: Eylemler, likidite tahsislerinin ayarlanması, portföylerin yeniden dengelenmesi vb. gibi likidite sağlayıcısı tarafından alınan kararlara karşılık gelir.
Ödüller: Ödüller, likidite sağlayıcısının amaç fonksiyonuna, tercihlerine ve kısıtlamalarına dayalı olarak sonuçların arzu edilirliğini ölçer. Ödüller arzu edilen sonuçlar için pozitif (örneğin yüksek getiri) ve istenmeyen sonuçlar için negatif (örneğin yüksek risk veya düşük performans) olabilir.
Amaç Fonksiyonu: Amaç fonksiyonu, likidite sağlayıcısının arzu ettiği sonucu temsil eder; bu, getirileri en üst düzeye çıkarmak, riskleri en aza indirmek veya ikisi arasında belirli bir dengeyi sağlamak gibi faktörlerin bir kombinasyonu olabilir. Kısıtlamalar, likidite tahsisleri, sermaye kullanımı, risk tolerans seviyeleri veya likidite sağlayıcısı tarafından tanımlanan diğer kısıtlamalara ilişkin sınırlamaları içerebilir.
ABM, her biri Uniswap V3 ekosisteminde belirli bir rolü temsil eden çeşitli aracı türlerini içerir. İki ana aracı, sırasıyla likidite sağlamak ve token takasları gerçekleştirmek için Uniswap havuzlarıyla etkileşime giren Likidite Sağlayıcı Temsilci ve Takas Aracısıdır. Bu temsilcilerin davranışları, agents_policies.py
dosyasında tanımlanan politikalar tarafından belirlenir ve eylemlerinin gerçek dünya stratejileri ve piyasa koşullarıyla uyumlu olması sağlanır.
Likidite Sağlayıcı Temsilcisi: Bu aracı Uniswap havuzlarına likidite ekler ve likiditeyi kaldırır. Piyasanın mevcut durumuna ve acentenin tercihlerine göre eylemlerini belirleyen bir dizi politika izler.
Swapper Agent: Swapper Agent, fiyat farklılıkları ve arbitraj fırsatlarından yararlanarak Uniswap havuzları içinde token takasları gerçekleştirir. Davranışı, işlem ücretleri ve kaymalar dikkate alınarak, işlemlerin potansiyel kârlılığını değerlendiren politikalar tarafından yönlendirilir.
netlist.py
dosyası ABM'nin merkezinde yer alır ve aracıların birbirleriyle ve Uniswap havuzlarıyla nasıl etkileşime gireceğini yapılandırır. Aracılar, politikalar ve simülasyon ortamı arasındaki ilişkileri tanımlar.
SimEngine.py
, SimStateBase.py
ve SimStrategyBase.py
modülleri simülasyonları çalıştırmak için temel unsurları sağlar. SimEngine simülasyonu yönetir, zaman akışını ve aracı eylemlerin yürütülmesini yönetir. SimStateBase, simülasyonun mevcut durumunu korur; aracı tutma durumları, havuz durumları ve diğer ilgili değişkenler hakkındaki verileri depolar. SimStrategyBase, simülasyon boyunca temsilci davranışını yönlendiren kapsayıcı stratejileri tanımlar.
RL Agent, DeFi pazarını simüle etmek için Uniswap modeli ve aracı tabanlı modelle arayüz oluşturan DiscreteSimpleEnv
adlı özel bir ortamda çalışır. Bu ortam, temsilcinin Uniswap havuzlarıyla etkileşimini kolaylaştırarak likidite ekleyip çıkarmasına ve eylemlerinin sonuçlarını gözlemlemesine olanak tanır. RL Aracısı, Uniswap V3'te gerçek dünya likidite provizyonunu simüle etmek için Uniswap modeli ve ABM ile etkileşime girer. Gerçekçi etkileşimler sağlayan, ABM'de tanımlanan politikalar ve simülasyon konfigürasyonu ile likidite eklenmesi veya çıkarılmasıyla sonuçlanan eylemleri seçer.
Durum Alanı: Ortamın durum alanı, mevcut fiyat, likidite ve ücret artışı gibi çeşitli piyasa göstergelerini içerir. Bu parametreler normalleştirilir ve her zaman adımında aracıya sunulur.
Eylem Alanı: Temsilcinin eylem alanı, bir Uniswap havuzuna likidite eklemek için fiyat sınırlarını temsil eden sürekli değerlerden oluşur. Bu eylemler Uniswap havuzlarıyla etkileşime dönüştürülerek ortamın durumunu etkiler.
Ödül Fonksiyonu: Ödül fonksiyonu RL Temsilcisinin eğitimi için çok önemlidir. Ücret gelirini, kalıcı kaybı, portföy değerini ve potansiyel cezaları hesaba katarak acentenin öğrenme sürecine rehberlik edecek skaler bir ödül sinyali sağlar.
RL Agent, Uniswap V3'te gerçek dünya likidite provizyonunu simüle etmek için Uniswap modelinden ve aracı tabanlı modelden yararlanır. DiscreteSimpleEnv
aracılığıyla Uniswap havuzlarıyla etkileşime girerek likidite ekleme veya kaldırmayla sonuçlanan eylemler gerçekleştirir. Aracının politikaları ve simülasyon konfigürasyonu ABM bileşeninde tanımlanarak gerçekçi ve tutarlı bir dinamik ortam sağlanır.
Temsilciyi Eğitin ve Değerlendirin: Temsilci, her biri farklı bir piyasa senaryosunu (farklı havuz) temsil eden bir dizi bölüm üzerinden eğitilir. Acentenin performansı, likidite sağlamayla ilgili riskleri en aza indirirken getirileri en üst düzeye çıkarma becerisine göre değerlendirilir. Akıllı Likidite Tedarik Çerçevesinin etkinliği, takviyeli öğrenme (RL) aracısının performansının değerlendirilmesi yoluyla değerlendirilir.
Ortam Kurulumu: RL aracısını değerlendirmek için, DiscreteSimpleEnvEval
temel ortamını genişleten özel bir değerlendirme ortamı kurduk DiscreteSimpleEnv
. Bu ortam, aracı politikalarının değerlendirilmesi için özel olarak tasarlanmıştır.
Temel Aracı: Değerlendirme kurulumumuzda, RL aracısının performansını temel aracının performansıyla karşılaştırırız. Temel acentenin eylemleri, likidite havuzunun mevcut durumuna dayanan bir temel politika tarafından belirlenir. Bu aracı, RL aracısının performansını değerlendirmek için bir referans noktası sağlamayı amaçlamaktadır.
Eğitim
Değerlendirme
Havuz Senkronizasyonu: Şu anda çerçeve, havuzların gerçek zamanlı senkronizasyonunu tam olarak yakalayamamaktadır ve bu da gerçek Uniswap V3 dinamiklerinin modellenmesinde tutarsızlıklara yol açabilir. Gelecekteki çalışmalar, daha iyi havuz senkronizasyonu için mekanizmaların dahil edilmesine, gerçekçiliği artırmak için potansiyel olarak işaret/konum verilerinin veya olayların kullanılmasına odaklanmalıdır.
Naif Acente Politikaları: Mevcut çerçevede uygulanan acente politikaları nispeten basit ve naiftir. Daha doğru simülasyonlar elde etmek için gelecekteki yinelemelerde daha kapsamlı aracı politikaları tanımlamayı amaçlamalıdır. Bu politikalar gürültü tüccarları, bilgili tüccarlar, perakende likidite sağlayıcıları ve kurumsal likidite sağlayıcıları gibi çeşitli Uniswap aracılarını modelleyebilir. Alternatif olarak, geçmiş havuz verileriyle eğitilen istatistiksel modeller, daha gerçekçi davranışlar için aracı politikalarına bilgi sağlayabilir.
Seyrek Gözlem Alanı: Temsilcilere sağlanan gözlem alanı, havuzun durumu hakkında kapsamlı bilgiden yoksundur. Karar verme yeteneklerini geliştirmek için gelecekteki iyileştirmeler, aracılara havuzun durumuna ilişkin daha kapsamlı bir anlayış sunan mühendislik özelliklerinin yanı sıra onay ve konum verilerini de içermelidir.
Sınırlı Eylem Alanı: Acentelerin eylem alanı şu anda sabit likidite miktarları ve sınırlı fiyat aralığı sınırlarıyla sınırlıdır. Likidite tedariğinde daha fazla esnekliğe izin verecek şekilde eylem alanının genişletilmesi ve adım başına birden fazla pozisyonun dikkate alınması simülasyonların doğruluğunu artırabilir.
Senkronize Havuzlar: Uniswap V3 ortamında daha gerçekçi dinamikler oluşturmak için muhtemelen işaretleme/konum verileri veya olayları kullanarak havuzları senkronize etmek için mekanizmalar uygulayın.
Hiperparametre Ayarlaması: Aktör/Eleştirmen Ağ Mimarisi, alfa, beta, tau, parti boyutu, adımlar, bölümler, ölçeklendirme parametreleri (ödüller, eylemler, gözlem alanı)
Kapsamlı Aracı Politikaları: Çeşitli Uniswap aracılarını doğru bir şekilde modelleyen veya aracı davranışını bilgilendirmek için geçmiş havuz verileri üzerinde eğitilmiş istatistiksel modelleri kullanan daha karmaşık analitik politikaları tanımlayın.
Bilgilendirici Gözlem Alanı: Onay ve konum verilerini dahil ederek gözlem alanını geliştirin ve aracılara havuzun durumuna ilişkin kapsamlı bir görünüm sağlayan özellikler tasarlayın.
Geliştirilmiş Ödül İşlevi: Daha geniş bir faktör yelpazesini hesaba katan ve daha etkili temsilci eğitimine yol açan gelişmiş bir ödül işlevi geliştirin.
Çoklu Pozisyonlar: Her zaman adımında sabit bütçeli bir pozisyon yerine, temsilciye simülasyonun başlangıcında bir bütçe tahsis edildiği ve daha sonra bu bütçeyi sonraki adımlarda en iyi şekilde kullanmayı öğrendiği daha kapsamlı bir mekanizma uygulayın.
Temel Politikalar: RL aracısının performansını değerlendirmek için daha kapsamlı temel politikalar tanımlayın
Hiperparametre Ayarlama: Daha iyi eğitim performansı için takviyeli öğrenme aracısının hiperparametrelerini daha da iyileştirin ve optimize edin.
Diğer RL Aracılarıyla Denemeler: Belirli senaryolarda avantaj sağlayıp sağlamadıklarını belirlemek için Yakın İlke Optimizasyonu (PPO) veya Soft Actor-Critic (SAC) gibi alternatif RL aracı modellerini keşfedin.
Çoklu Temsilci RL (MARL): Çoklu likidite sağlayıcıları ve takasçıları arasındaki etkileşimlerin modellenmesinde faydalı olabilecek çoklu aracılı takviyeli öğrenme tekniklerinin uygulanmasını araştırın.
Çevrimiçi Öğrenme: Temsilcilerin değişen piyasa koşullarına gerçek zamanlı olarak uyum sağlamasına olanak tanıyan çevrimiçi öğrenme stratejilerini uygulayarak daha dinamik ve uyarlanabilir bir likidite provizyon çözümü sağlayın.