This story draft by @hgwells has not been reviewed by an editor, YET.
Text Book of Biology, Part 1: Vertebrata by H. G. Wells, is part of the HackerNoon Books Series. You can jump to any chapter in this book here. General Anatomy
Section 1. We will now study the adult anatomy of the frog, and throughout we shall make constant comparisons with that of the rabbit. In the rabbit we have a distinctly land-loving, burrowing animal; it eats purely vegetable food, and drinks but little. In the frog we have a mainly insectivorous type, living much in the water. This involves the moister skin, the shorter alimentary canal, and the abbreviated neck (Rabbit, ) of the frog; the tail is absent-- in a fish it would do the work the frog accomplishes with his hind legs-- and the apertures which are posterior in the rabbit, run together into one dorsal opening, the cloaca. There is, of course (Rabbit, ), no hair the skin is smooth, and an external ear is also absent. The remarkable looseness of the frog's skin is due to great lymph spaces between it and the body wall.) with that of the rabbit, we notice that the diaphragm is absent (Rabbit, ), and the body cavity, or coelom, is, with the exception of the small bag of the pericardium round the heart, one continuous space. The forked tongue is attached in front of the lower jaw, and can be flicked out and back with great rapidity in the capture of the small insects upon which the frog lives. The posterior nares open into the front of the mouth-- there is no long nasal chamber, and no palate, and there is no long trachea between the epiglottis and the lungs. The oesophagus is less distinct, and passes gradually, so far as external appearances go, into the bag-like stomach, which is much less inflated and transverse than that of the rabbit. The duodenum is not a U-shaped loop, but makes one together with the stomach; the pancreas lies between it and the stomach, and is more compact than the rabbit's. There is no separate pancreatic duct, but the bile duct runs through the pancreas, and receives a series of ducts from that gland as it does so. The ileum is shorter, there is no sacculus rotundus, and the large intestine has no caecum, none of the characteristic sacculations of the rabbit's colon, and does not loop back to the stomach before the rectum section commences. The anus opens not upon the exterior, but into a cloacal chamber. The urinary and genital ducts open separately into this cloaca, and dorsally and posteriorly to the anus. The so-called urinary bladder is ventral to the intestine, in a position answering to that of the rabbit, but it has no connection with the ureters, and it is two-horned., shows the heart opened; l.au. and r.au. are the left and right auricles respectively; the truncus arteriosus is seen to be imperfectly divided by a great longitudino-spiral valve (l.s.v.); p.c. is the pulmo-cutaneous artery -going to the lungs- [supplying skin and lungs]; d.ao., the dorsal aorta [furnishing the supply of the body and limbs]; and c.a. the carotid artery going to the head; all of which vessels (compare ) are paired., and meets its fellow dorsal to the liver. Each arch gives off subclavian arteries to the limbs, and the left, immediately before meeting the right, gives off the coeliaco-mesenteric artery [to the alimentary canal]. This origin of the coeliaco-mesenteric artery a little to the left, is the only asymmetry (want of balance) in the arterial system of the frog, as contrasted with the very extensive asymmetry of the great vessels near the heart of the rabbit. [Posteriorly the dorsal aorta forks into two common iliac arteries (right and left) supplying the hind limbs.] gives a side view of the frog, to display the circulation.
{Lines from Second Edition only.}
[The venous return to the heart, as in the rabbit, is by paired venae cavae anteriores and by a single vena cava inferior. The factors of the anterior cava on either side are an external jugular (ex.j.) an innominate vein (in.v.) and subclavian (scl.v.). The last receives not only the brachial vein (b.v.) from the fore limb, but also a large vein bringing blood for the skin, the cutaneous (p.v.). The innominate vein has also two chief factors, the internal jugular (l.i.j.v.) and the subscapular (s.s.v.). The blood returns from each hind limb by a sciatic (l.sc.) or femoral (f.m.) vein, and either passes to a renal portal vein (l.r.p.), which breaks into capillaries in the kidney, or by a paired pelvic vein (l.p.v. in ) which meets its fellow in the middle line to form the anterior abdominal vein (a.ab.v.) going forward and uniting with the (median) portal vein (p.v.) to enter the liver.]
-The vessels are named in the references to the figure, which should be carefully copied and mastered. Here we need only- [Comparing with the rabbit, we would especially] call attention to the fact that the vena cava inferior extends posteriorly only to the kidney, and that there is a renal portal system. The blood from the hind limbs either flows by the anterior abdominal vein to the portal vein and liver, or it passes by the renal portal vein to the kidney. There the vein breaks up, and we find in the frog's kidney, just as we find in the frog's and rabbit's liver, a triple system of (a) nutritive arterial, (b) afferent* venous and (c) efferent** venous vessels.
* a, ad = to;
** e, ex = out of.). In Figure 5, , the position of two lymph hearts (l.h., l.h.) which pump lymph into the adjacent veins, is shown.) consists of nine vertebrae, the centra of which have faces, not flat, but hollow in front (pro-coelous), and evidently without epiphyses (compare the Rabbit). The anterior is sometimes called the atlas, but it is evidently not the homologue of the atlas of the rabbit, since the first spinal nerve has a corresponding distribution to the twelfth cranial of the mammal, and since, therefore, it is probable that the mammalian skull = the frog's skull + one (or more) vertebrae incorporated with it. Posteriorly the vertebral column terminates in the urostyle, a calcified unsegmented rod. The vertebrae have transverse processes, but no ribs.) consists of an upper segment of one bone, the humerus, as in the rabbit; a middle section, the radius and ulna, fused here into one bone, and not, as in the mammalian type, separable; of a carpus, and of five digits, of which the fourth is the longest. The shoulder girdle is more important and complete than that of the higher type. There is a scapula (sc.) with an unossified cartilaginous supra-scapula (s.sc.); the anterior border of the scapula answers to the acromion. On the ventral side a cartilaginous rod, embraced by the clavicle (cl.) (a membrane bone in this type), runs to the sternum, and answers to the clavicle of the rabbit. In the place of the rabbit's coracoid process, is a coracoid bone (co.), which reaches from the glenoid cavity to the sternum; it is hidden on the right side of , which is a dorsal view of the shoulder girdle. There is a pre-omosternum (o.st.) and a post-omosternum, sometimes termed a xiphisternum (x.). shows the pelvic girdle and limb of the frog. There is a femur (f.); tibia and fibula (t. and f.) are completely fused; the proximal bones of the tarsus, the astragalus (as.), and calcaneum (cal.) are elongated, there are five long digits, and in the calcar (c.) an indication of a sixth. With considerable modifications of form, the three leading constituents of the rabbit's pelvic girdle occur in relatively identical positions. The greatly elongated ilium (il.) articulates with the single (compare Rabbit) sacral vertebra (s.v. in ). The ischium (is.) is relatively smaller than in the rabbit, and the pubis (pu.) is a ventral wedge of unossified cartilage. The shape of the pelvic girdle of the frog is a wide departure from that found among related forms. In connection with the leaping habit, the ilia are greatly elongated, and the pubes and ischia much reduced. Generally throughout the air-frequenting vertebrata, we find the same arrangement of these three bones, usually in the form of an inverted. Y-- the ilium above, the ischium and pubis below, and the acetabulum at the junction of the three.) lie in the body cavity, and are white bodies usually dappled with black pigment. Vasa efferentia (v.e.) run to the internal border of the anterior part of the kidney, which answers, therefore, to the rabbit's epididymis. The hinder part of the kidney is the predominant renal organ. There is a common uro-genital duct, into which a seminal vesicle, which is especially large in early spring, opens. This is the permanent condition of the frog. In the rabbit, for urogenital duct, we have ureter and vas deferens; the testes and that anterior part of the primitive kidney, the epididymis, shift back into the scrotal sacs, and the ureters shift round the rectum and establish a direct connection with the bladder, carrying the genital ducts looped over them. The oviducts of the female do not fuse distally to form a median vagina as they do in the rabbit. In front of the genital organ in both sexes is a corpus adiposum (c.ad.), which acts as a fat store, and is peculiar to the frogs and toads. The distal end of the oviduct of the female is in the breeding season (early March) enormously distended with ova, and the ovaries become then the mere vestiges of their former selves. The distal end of the oviduct is, therefore, not unfrequently styled the uterus. There is no penis in the male, fertilisation of the ova occurring as they are squeezed out of the female by the embracing fore limbs of the male. The male has a pad, black in winter, shown in , which is closely pressed against the ventral surface of the female in copulation, and which serves as a ready means of distinguishing the sex. ) {First Edition error.} [13] corresponds in distribution with the rabbit's hypoglossal nerve, a point we shall refer to again when we speak of the skull. The second and third constitute the brachial plexus. The last three form the sciatic plexus going to the hind limb.. There is also a deeper palatine branch of VII. (P.) running under V2 and V3 below the orbit, and to be seen together with V1 and V2 after removal of the eyeball. The ninth nerve similarly forks over the first branchial slit of the tadpole, and evidence of the fork remains in the frog. It is seen curving round anterior to the hypoglossal nerve, and lying rather deeper in dissection. The vagus (tenth) nerve is distributed to heart, lungs, and viscera-- in the tadpole it also sends for forking branches over the second, third, and fourth branchial slits. It lies deeper than IX., and internal to the veins, and runs close beside the cutaneous artery. Most of these nerves are easily dissected and no student should rest satisfied until he has actually seen them.
This eBook is for the use of anyone anywhere at no cost and with almost no restrictions whatsoever. You may copy it, give it away or re-use it under the terms of the Project Gutenberg License included with this eBook or online at www.gutenberg.org, located at .