This story draft by @hgwells has not been reviewed by an editor, YET.
Text Book of Biology, Part 1: Vertebrata by H. G. Wells, is part of the HackerNoon Books Series. You can jump to any chapter in this book here. Anatomy
Section 1. We find in Amphioxus the essential vertebrate features reduced to their simplest expression and, in addition, somewhat distorted. There are wide differences from that vertebrate plan with which the reader may now be considered familiar. There are no limbs. There is an unbroken fin along the median dorsal line and coming round along the ventral middle line for about half the animal's length. But two lowly vertebrates, the hag-fish and lamprey, have no limbs and a continuous fin. There is, as we shall see more clearly, a structure, the respiratory atrium, not apparently represented in the true vertebrate types, at least in their adult stages. There is no distinct heart, only a debateable brain, quite without the typical division into three primary vesicles, no skull, no structures whatever of cartilage or bone, no genital ducts, no kidneys at all resembling those of the vertebrata, no pancreas, no spleen; apparently no sympathetic chain, no paired sense organs, eyes, ears, or nasal sacs, in all of which points we have striking differences from all true vertebrata; and such a characteristic vertebrate peculiarity as the pineal gland we can only say is represented very doubtfully by the eye spot., n.c.), surrounded by a cellular sheath. Such a rod is precursor to the vertebral column in the true vertebrates, but, except in such lowly forms as the lamprey, is usually replaced, partially (e.g., dog-fish) or wholly (as in the rabbit) by at first cartilaginous vertebrae whose bodies are derived from its sheath. Further, while in all true vertebrata the notochord of the developing young reaches anteriorly at most to the mid-brain, and is there at its termination enclosed by the middle portion of the skull, in Amphioxus it reaches far in front of the anterior extremity of the nervous system, to the end of the animal's body.* On this account the following classification is sometimes made of those animals which have a notochord:--
-Chordata_ (= Vertebrata, as used by Lankester).
* The anterior end of the notochord in the developing rabbit or dog lies where the middle of the basisphenoid bone is destined to be., shows the general anatomy of Amphioxus. We recognise four important points of resemblance to the earlier phases of the higher and the permanent structure of the lower members of the vertebrata, and it is these that justify the inclusion of amphioxus in this volume. In the first place there is the--
-Notochord_.
In the next, just above it (at s.c.) we find--
-A Dorsal Tubular Nervous Axis_,
the spinal cord. Thirdly, the pharynx (ph.) is perforated by--
-Respiratory Slits_,
though these, instead of being straight slashes, are modified from a U-shape [slant very much forward and are much more numerous than in any true vertebrate.]. -And-, Fourthly, there is, as we shall see, a--
-Vertebrate Type of Circulation_.
[And finally the body-wall muscles are divided into--]
[-Myomers_.]). The cardiac aorta (c.ao.) lies along the ventral side of the pharynx, and sends branches up along the complete bars between the gill slits. There is no -distinct- heart, but the whole of the cardiac aorta is contractile, and at the bases of the aortic arches that run up the bars there are contractile dilatations that assist in the propulsion of the blood. Dorsal to the pharynx, as in fishes, there is a pair of dorsal aorta (d.ao.) that unite above the liver (compare the frog, for instance), and thence run backward as a median dorsal aorta (d.ao.'). A portal vein (p.v.) bring blood back from the intestine (and apparently from the whole posterior portion of the animal) to the liver. Thence hepatic veins (hep.) take it to the cardiac aorta.{Lines from First Edition only.}
-When we remember that in the embryonic vertebrate the heart is at first a straight tube, this circulation appears even more strikingly vertebrate in its character than before.-). Figure 10 gives diagrammatically a section of a very young stage of Amphioxus; P is the pharynx portion of the alimentary canal, coe. is the coelom surrounding it at this stage here as elsewhere; mt.c. are certain lymph spaces, the metapleural canals, between which a small invagination (i.e., a pushing-in), at., of the outer epidermis occurs; n.c. is the notochord, and s.c. the spinal cord. The gill slits, by which P. communicates with the exterior, are not shown. Next shows the invagination (at.) pushing its way in, and cut off from the exterior by a meeting of the body wall below. Note that at. is a portion of the animal's exterior thus embraced by its body, and that its lining is therefore of the same material as the external integument. In at. is developing upward, so that the true body hangs into it. Now imagine the gill slits perforated, as shown by the double-headed arrow in . Figure 3, on , is a less diagrammatic representation of a cross-section of the pharyngeal region (vide Figure 1, ). The student should compare Figure 3, , and Figure 12, . The atrium and metapleural canals are easily recognised in both. In Figure 3 the coelom is much cut up by the gill slits, and we have remaining of it (a) the dorsal coelomic canals (d.c.c.) and (b) the branchial canals (br.c.) in the bars between the slits. The atrial cavity remains open to the exterior at one point, the atrial pore (at.p.)., comparing Figure 1 as he goes. He should do this before reading what follows. One little matter must be borne in mind. These figures are merely intended to convey the great structural ideas, and they are considerably simplified; they must not be regarded as a substitute for the examination of microscopic sections. [He will notice a number of rounded masses from the body wall. The] -For instance, the body-wall- muscles of Amphioxus are arranged in bundles bent sharply in an arrow shape, the point forward. -A number of these bundles are cut in any one section, and so the even shading of our diagrams, if they professed to be anything more than diagrams, should be broken up into masses.- These -bundles, we may mention-, are called myomeres, and they are indicated in by lines pointing acutely forward. [Several are consequently cut in any transverse section (), and these are the rounded masses he sees.] Similar myomeres, similarly situated, are found in fish, behind the head, and, less obviously, they occur with diminishing importance as the scale of the vertebrata is ascended.), opening on the left side, which has been assumed to be olfactory in its functions, and in the mouth chamber a ciliated pit (c.p.), which may, or may not, be an organ of taste. The ventral fissure of the spinal cord is absent. The dorsal nerves are without ganglia, and do not come off in pairs, but alternately, one to the left, then one to the right, one to the left, one to the right, and so on. The ventral nerves are very short, more numerous than the dorsal, and never unite with these latter to form mixed nerves.The student will observe that here, just as in the case of the ciliated funnel and anus, the Amphioxus is not strictly symmetrical, but twisted, as it were, and so departs from the general rule of at least external bilateral symmetry obtaining among the vertebrates. It habitually lies on one side in the mud of the sea bottom, and it is probable that this external asymmetry is due to this habit, so that too much classificatory importance must not be attached to it. The soles and other related fish, for instance, are twisted and asymmetrical, through a similar specific habit, to such an extent that both eyes lie on one side of the animal.), a pair of pigmented tubes opening into the atrium at the hind end of the pharynx, lying forward along by the dorsal coelomic canals, and having an internal opening also.
(b) Certain tubuli described by Weiss as situated in a series along the upper corners of the atrial cavity, and communicating, after the fashion, of the "nephridia" of the earthworm, with the coelom and with the exterior (or, rather, with that portion of the animal's exterior enclosed in by the atrial wall; compare ).
(c) The general epithelial lining of the atrium.The reproductive organs (Figure 4, , g.) are masses of cells situated in an isolated part of the coelom in the atrial folds, and, having no ducts, their contents must escape into the atrium by rupture of the body-wall. Thence they escape either by gill-slits, pharynx and mouth, or, more generally, through the atrial pore. The animals, like all the vertebrata, are dioecious, i.e., male or female., is a ciliated path or groove on the under side of the pharynx, which is generally supposed to represent the thyroid gland of vertebrates. The vertebrate thyroid, early in development, is certainly an open and long narrow groove in the ventral side of the pharynx. The hyper-pharyngeal groove (h.p.) has been in the past compared to the pituitary body, but there is little doubt now that this structure is represented by the ciliated pit.
This eBook is for the use of anyone anywhere at no cost and with almost no restrictions whatsoever. You may copy it, give it away or re-use it under the terms of the Project Gutenberg License included with this eBook or online at www.gutenberg.org, located at .