visit
Prerequisites
To implement the chatbot we will be using Keras which is a Deep Learning library, NLTK which is a Natural Language Processing Toolkit and some helpful libraries. Run the below command to make sure all the libraries are installedpip install tensorflow keras pickle nltk
Step 1. Import libraries and load the data - Create a new python file and name it as train_chatbot and then we are going to import all the required modules. After that, we will read the JSON data file in our python program.
import numpy as np
from keras.models import Sequential
from keras.layers import Dense, Activation, Dropout
from keras.optimizers import SGD
import random
import nltk
from nltk.stem import WordNetLemmatizer
lemmatizer = WordNetLemmatizer()
import json
import pickle
intents_file = open('intents.json').read()
intents = json.loads(intents_file)
Step 2. Preprocessing the data
The model cannot take the raw data. It has to go through a lot of pre-processing for machine to easily understand. For a textual data, there are many preprocessing techniques available. The first technique is Tokenizing in which we break the sentences into words. By observing the intents file we can see that each tag contains a list of patterns and responses. We tokenize each pattern and add the words in a list. Also, we create a list of classes and documents to add all the intents associated with patterns.words=[]
classes = []
documents = []
ignore_letters = ['!', '?', ',', '.']
for intent in intents['intents']:
for pattern in intent['patterns']:
#tokenize each word
word = nltk.word_tokenize(pattern)
words.extend(word)
#add documents in the corpus
documents.append((word, intent['tag']))
# add to our classes list
if intent['tag'] not in classes:
classes.append(intent['tag'])
print(documents)
# lemmaztize and lower each word and remove duplicates
words = [lemmatizer.lemmatize(w.lower()) for w in words if w not in ignore_letters]
words = sorted(list(set(words)))
# sort classes
classes = sorted(list(set(classes)))
# documents = combination between patterns and intents
print (len(documents), "documents")
# classes = intents
print (len(classes), "classes", classes)
# words = all words, vocabulary
print (len(words), "unique lemmatized words", words)
pickle.dump(words,open('words.pkl','wb'))
pickle.dump(classes,open('classes.pkl','wb'))
In the end, the words contain the vocabulary of our project and classes contain the total entities to classify. To save the python object in a file we used the pickle.dump() method. These files will be helpful after the training is done and we predict the chats.
Step 3. Create training and testing data
To train the model we will convert each input pattern into numbers. First, we will lemmatize each word of the pattern and create a list of zeroes of the same length as the total number of words. We will set value 1 to only those index that contains the word in the patterns. Same way we will create the output by setting 1 to the class input pattern belongs to.# create the training data
training = []
# create empty array for the output
output_empty = [0] * len(classes)
# training set, bag of words for every sentence
for doc in documents:
# initializing bag of words
bag = []
# list of tokenized words for the pattern
word_patterns = doc[0]
# lemmatize each word - create base word, in attempt to represent related words
word_patterns = [lemmatizer.lemmatize(word.lower()) for word in word_patterns]
# create the bag of words array with 1, if word is found in current pattern
for word in words:
bag.append(1) if word in word_patterns else bag.append(0)
# output is a '0' for each tag and '1' for current tag (for each pattern)
output_row = list(output_empty)
output_row[classes.index(doc[1])] = 1
training.append([bag, output_row])
# shuffle the features and make numpy array
random.shuffle(training)
training = np.array(training)
# create training and testing lists. X - patterns, Y - intents
train_x = list(training[:,0])
train_y = list(training[:,1])
print("Training data is created")
Step 4. Training the model
The architecture of our model will be a neural network consisting of 3 Dense layers. The first layer has 128 neurons, second one has 64 and the last layer will have the same neurons as the number of classes. The dropout layers are introduced to reduce overfitting of the model. We have used SGD optimizer and fit the data to start training of the model. After the training of 200 epochs is completed we then save the trained model using Keras model.save(“chatbot_model.h5”) function.# deep neural networds model
model = Sequential()
model.add(Dense(128, input_shape=(len(train_x[0]),), activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(64, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(len(train_y[0]), activation='softmax'))
# Compiling model. SGD with Nesterov accelerated gradient gives good results for this model
sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy'])
#Training and saving the model
hist = model.fit(np.array(train_x), np.array(train_y), epochs=200, batch_size=5, verbose=1)
model.save('chatbot_model.h5', hist)
print("model is created")
Step 5. Interacting with the chatbot
Our model is ready to chat so now let’s create a nice graphical user interface for our chatbot in a new file. You can name the file as gui_chatbot.pyIn our GUI file, we will be using the Tkinter module to build the structure of the desktop application and then we will capture the user message and again perform some preprocessing before we input the message into our trained model.The model will then predict the tag of the user’s message and we will randomly select the response from the list of responses in our intents file. Here’s the full source code for the GUI file.import nltk
from nltk.stem import WordNetLemmatizer
lemmatizer = WordNetLemmatizer()
import pickle
import numpy as np
from keras.models import load_model
model = load_model('chatbot_model.h5')
import json
import random
intents = json.loads(open('intents.json').read())
words = pickle.load(open('words.pkl','rb'))
classes = pickle.load(open('classes.pkl','rb'))
def clean_up_sentence(sentence):
# tokenize the pattern - splitting words into array
sentence_words = nltk.word_tokenize(sentence)
# stemming every word - reducing to base form
sentence_words = [lemmatizer.lemmatize(word.lower()) for word in sentence_words]
return sentence_words
# return bag of words array: 0 or 1 for words that exist in sentence
def bag_of_words(sentence, words, show_details=True):
# tokenizing patterns
sentence_words = clean_up_sentence(sentence)
# bag of words - vocabulary matrix
bag = [0]*len(words)
for s in sentence_words:
for i,word in enumerate(words):
if word == s:
# assign 1 if current word is in the vocabulary position
bag[i] = 1
if show_details:
print ("found in bag: %s" % word)
return(np.array(bag))
def predict_class(sentence):
# filter below threshold predictions
p = bag_of_words(sentence, words,show_details=False)
res = model.predict(np.array([p]))[0]
ERROR_THRESHOLD = 0.25
results = [[i,r] for i,r in enumerate(res) if r>ERROR_THRESHOLD]
# sorting strength probability
results.sort(key=lambda x: x[1], reverse=True)
return_list = []
for r in results:
return_list.append({"intent": classes[r[0]], "probability": str(r[1])})
return return_list
def getResponse(ints, intents_json):
tag = ints[0]['intent']
list_of_intents = intents_json['intents']
for i in list_of_intents:
if(i['tag']== tag):
result = random.choice(i['responses'])
break
return result
#Creating tkinter GUI
import tkinter
from tkinter import *
def send():
msg = EntryBox.get("1.0",'end-1c').strip()
EntryBox.delete("0.0",END)
if msg != '':
ChatBox.config(state=NORMAL)
ChatBox.insert(END, "You: " + msg + '\n\n')
ChatBox.config(foreground="#446665", font=("Verdana", 12 ))
ints = predict_class(msg)
res = getResponse(ints, intents)
ChatBox.insert(END, "Bot: " + res + '\n\n')
ChatBox.config(state=DISABLED)
ChatBox.yview(END)
root = Tk()
root.title("Chatbot")
root.geometry("400x500")
root.resizable(width=FALSE, height=FALSE)
#Create Chat window
ChatBox = Text(root, bd=0, bg="white", height="8", width="50", font="Arial",)
ChatBox.config(state=DISABLED)
#Bind scrollbar to Chat window
scrollbar = Scrollbar(root, command=ChatBox.yview, cursor="heart")
ChatBox['yscrollcommand'] = scrollbar.set
#Create Button to send message
SendButton = Button(root, font=("Verdana",12,'bold'), text="Send", width="12", height=5,
bd=0, bg="#f9a602", activebackground="#3c9d9b",fg='#000000',
command= send )
#Create the box to enter message
EntryBox = Text(root, bd=0, bg="white",width="29", height="5", font="Arial")
#EntryBox.bind("<Return>", send)
#Place all components on the screen
scrollbar.place(x=376,y=6, height=386)
ChatBox.place(x=6,y=6, height=386, width=370)
EntryBox.place(x=128, y=401, height=90, width=265)
SendButton.place(x=6, y=401, height=90)
root.mainloop()
python train_chatbot.py
Explore more @ .