visit
This group compares the performance of portfolios which contain two assets, but differ by rebalance period. This performance varies from 1 hour (top left chart) to 1 month (bottom right chart). Each histogram incorporates 1,000 backtests, where the x-axis is the percent gain better than HODL. The y-axis is the number of backtests which fell into the performance buckets that are defined on the x-axis. (Example: A backtest was run with a rebalance period of 1 hour and 2 assets in the portfolio. The results of a backtest was a 50% increase over buy and hold. This would mean you add a 1 to the top left chart in the x-axis bucket which has the range of 44 and 67. This process is then repeated until 1,000 backtests have been run.)
This demonstrates the median percent for which rebalancing at varying intervals outperformed HODL for a portfolio which contains two assets.
A two asset portfolio represents the most simple option for a portfolio. In this instance, the cryptocurrencies simply trade back and forth to each other during each rebalance period. We can see from these histograms that the shorter rebalancing periods result in a larger spread in performance. There are significantly less outliers for shorter rebalancing periods and the results are consistently higher. As the rebalance period increases, the spread actually decreases. This results in less variance in results, but a higher observance of outliers. This suggests higher periods produce lower returns consistently, but also produce more sporadic outliers. The portfolios which used a 1 hour rebalance period outperformed buy and hold by the largest difference of 93%.
This group compares the performance of portfolios which contain four assets, but differ by rebalance period. This performance varies from 1 hour (top left chart) to 1 month (bottom right chart). Each histogram incorporates 1,000 backtests, where the x-axis is the percent gain over HODL. The y-axis is the number of backtests which fell into the performance buckets that are defined on the x-axis. (Example: A backtest was run with a rebalance period of 1 hour and 4 assets in the portfolio. The results of a backtest was a 50% increase over buy and hold. This would mean you add a 1 to the top left chart in the x-axis bucket which has the range of 32 and 66. This process is then repeated until 1,000 backtests have been run.)
This demonstrates the median percent for which rebalancing at varying intervals outperformed HODL for a portfolio which contains four assets.
Continuing the trends from the 2 asset portfolio study, we see that shorter rebalance periods have larger spreads in performance in the 4 asset portfolios as well. This results in fewer outliers and a significantly higher median performance than the longer rebalance periods. It can also be observed that the highest performing portfolios all utilized a 1 hour rebalance period. This is even the case when including all outliers. A period of one hour performed the best with a 177% gain OVER buy and hold.
This group compares the performance of portfolios which contain six assets, but differ by rebalance period. This performance varies from 1 hour (top left chart) to 1 month (bottom right chart). Each histogram incorporates 1,000 backtests, where the x-axis is the percent gain over HODL. The y-axis is the number of backtests which fell into the performance buckets that are defined on the x-axis. (Example: A backtest was run with a rebalance period of 1 hour and 6 assets in the portfolio. The results of a backtest was a 50% increase over buy and hold. This would mean you add a 1 to the top left chart in the x-axis bucket which has the range of 22 and 55. This process is then repeated until 1,000 backtests have been run.)
This demonstrates the median percent for which rebalancing at varying intervals outperformed HODL for a portfolio which contains six assets.
We observe from the 6 asset portfolio results that the trends discussed in the 2 and 4 asset portfolios continue. This includes the larger spread for shorter rebalance periods and a higher average performance for shorter rebalance periods. At this time, we can also begin to conclude that there is an increasing spread between the 1 hour rebalance period and the 1 month rebalance period as we increase the number of assets in the portfolio. We can keep that in mind as we continue the study. A portfolio which contains 6 assets and has a rebalance period of 1 hour outperformed HODL by 203%.
This group compares the performance of portfolios which contain eight assets, but differ by rebalance period. This performance varies from 1 hour (top left chart) to 1 month (bottom right chart). Each histogram incorporates 1,000 backtests, where the x-axis is the percent gain over HODL. The y-axis is the number of backtests which fell into the performance buckets that are defined on the x-axis. (Example: A backtest was run with a rebalance period of 1 hour and 8 assets in the portfolio. The results of a backtest was a 50% increase over buy and hold. This would mean you add a 1 to the top left chart in the x-axis bucket which has the range of 50 and 80. This process is then repeated until 1,000 backtests have been run.)
This demonstrates the median percent for which rebalancing at varying intervals outperformed HODL for a portfolio which contains eight assets.
We observe from the 8 asset portfolio results that the trends discussed in the 2, 4, and 6 asset portfolios continue. This includes the larger spread for shorter rebalance periods and a higher average performance for shorter rebalance periods. What we can also see is that there is only one histogram in this study of 8 asset portfolios that contained results which performed worse than HODL. This can be seen in the bottom right chart which represents the portfolios which used a 1 month rebalance period. The median 8 asset portfolio which rebalanced every 1 hour outperformed HODL by 224%.
This group compares the performance of portfolios which contain ten assets, but differ by rebalance period. This performance varies from 1 hour (top left chart) to 1 month (bottom right chart). Each histogram incorporates 1,000 backtests, where the x-axis is the percent gain over HODL. The y-axis is the number of backtests which fell into the performance buckets that are defined on the x-axis. (Example: A backtest was run with a rebalance period of 1 hour and 10 assets in the portfolio. The results of a backtest was a 50% increase over buy and hold. This would mean you add a 1 to the top left chart in the x-axis bucket which has the range of 44 and 72. This process is then repeated until 1,000 backtests have been run.)
This demonstrates the median percent for which rebalancing at varying intervals outperformed HODL for a portfolio which contains ten assets.
We observe from the 10 asset portfolio results that the trends discussed in the 2, 4, 6, and 8 asset portfolios continue. This includes the larger spread for shorter rebalance periods and a higher average performance for shorter rebalance periods. We can also see from these results that only 10 portfolios out of 4,000 performed worse than HODL if they had rebalanced even 1 time each month. This means if you randomly selected 10 assets and rebalanced at least once a month, you would have had a 99.75% chance of outperforming buy and hold over the last year. This is truly incredible. The median performance for a portfolio with 10 assets and a rebalance period of 1 hour was 234% BETTER than HODL.
Also, the listed value is the percent gain over buy and hold. So, a value of 10% would mean rebalancing performed 10% BETTER than HODL.
The median performance demonstrates that the higher the rebalance period with the higher number of assets presents the highest gains for rebalancing. Each value represents a percent increase OVER buy and hold. That means a value of 18 means the median of that group performed 18 percent BETTER than buy and hold. This demonstrates, even the absolute worst case performs better than by and hold, even after considering taxes. We can draw two major conclusions from this grid. First, we have obvious correlations between the rebalance period and the performance. As the rebalance period becomes shorter, the performance of the portfolio increases. A second correlation we can see is between the number of assets and performance. As the number of assets in the portfolio increases, there is an increase in performance. Therefore, the best performing portfolios were those that have both a short rebalance period and a large number of assets. To round out the complete comparison, we will combine every backtest to create an overall comparison.
Combining all of the backtests over all portfolios and rebalancing periods produces a complete picture comparing rebalancing and HODL. We observe a median complete performance of 64%. This means, if you were to randomly select a portfolio size between 2 and 10, randomly select a rebalance period between 1 hour and 1 month, and randomly select the assets in your portfolio, you would have a 50% chance of performing 64% better than buy and hold if the only difference was rebalancing.
The results show a median performance increase of 64% over all portfolio sizes, rebalance periods, and coin selections.
We can see quickly that there is a 9% difference in taxes between long and short term capital gains. We can compare this difference to the 64% boost in returns observed through rebalancing. What we see is that rebalancing significantly outperforms HODL even after factoring in tax implications of frequent trading. In fact, 92% of all portfolios which rebalanced over the past year beat HODL, after taxes.
That’s not the entire story, however. Rebalancing only trades a portion of the portfolio at any given time. This means part of a portfolio which uses rebalancing would not have been traded by the end of one year. These untouched portions can be taxed as long-term capital gains, reducing the overall taxes that are incurred as a result of rebalancing. The amount can be quantified by examining the volatility difference between all cryptocurrencies over the last several years. This would give us an idea of what percentage of a portfolio would typically be considered long-term capital gains. Since a proper simulation would require careful design, we will save this analysis for another post.Rebalancing beat HODL by a median of 64%. After taxes, this represented 92% of all possible cryptocurrency portfolios.
The Whitepaper for Portfolio Rebalancing in Crypto
Don’t forget to check out the , follow us on and for updates, and ask any questions to our amazing, active communities on & . Leave a comment to let us know your experiences with rebalancing!The Shrimpy Team