paint-brush
The Positive Theory of Infinity: A Triumph of the Scientific Method in Philosophy by@bertrandrussell
229 reads

The Positive Theory of Infinity: A Triumph of the Scientific Method in Philosophy

by Bertrand Russell November 23rd, 2022
Read on Terminal Reader
Read this story w/o Javascript
tldt arrow

Too Long; Didn't Read

The positive theory of infinity, and the general theory of number to which it has given rise, are among the triumphs of scientific method in philosophy, and are therefore specially suitable for illustrating the logical-analytic character of that method. The work in this subject has been done by mathematicians, and its results can be expressed in mathematical symbolism. Why, then, it may be said, should the subject be regarded as philosophy rather than as mathematics? This raises a difficult question, partly concerned with the use of words, but partly also of real importance in understanding the function of philosophy.
featured image - The Positive Theory of Infinity: A Triumph of the Scientific Method in Philosophy
Bertrand Russell  HackerNoon profile picture

Our Knowledge of the External World as a Field for Scientific Method in Philosophy, by Bertrand Russells, is part of the HackerNoon Books Series. You can jump to any chapter in this book here. VII. THE POSITIVE THEORY OF INFINITY

VII. THE POSITIVE THEORY OF INFINITY

The positive theory of infinity, and the general theory of number to which it has given rise, are among the triumphs of scientific method in philosophy, and are therefore specially suitable for illustrating the logical-analytic character of that method. The work in this subject has been done by mathematicians, and its results can be expressed in mathematical symbolism. Why, then, it may be said, should the subject be regarded as philosophy rather than as mathematics? This raises a difficult question, partly concerned with the use of words, but partly also of real importance in understanding the function of philosophy. Every subject-matter, it would seem, can give rise to philosophical investigations as well as to the appropriate science, the difference between the two treatments being in the direction of movement and in the kind of truths which it is sought to establish. In the special sciences, when they have become fully developed, the movement is forward and synthetic, from the simpler to the more complex. But in philosophy we follow the inverse direction: from the complex and relatively concrete we proceed towards the simple and abstract by means of analysis, seeking, in the process, to eliminate the particularity of the original subject-matter, and to confine our attention entirely to the logical form of the facts concerned.

.

The question “What is a number?” is one which, until quite recent times, was never considered in the kind of way that is capable of yielding a precise answer. Philosophers were content with some vague dictum such as, “Number is unity in plurality.” A typical definition of the kind that contented philosophers is the following from Sigwart's Logic (§ 66, section 3): “Every number is not merely a plurality, but a plurality thought as held together and closed, and to that extent as a unity.” Now there is in such definitions a very elementary blunder, of the same kind that would be committed if we said “yellow is a flower” because some flowers are yellow. Take, for example, the number 3. A single collection of three things might conceivably be described as “a plurality thought as held together and closed, and to that extent as a unity”; but a collection of three things is not the number 3. The number 3 is something which all collections of three things have in common, but is not itself a collection of three things. The definition, therefore, apart from any other defects, has failed to reach the necessary degree of abstraction: the number 3 is something more abstract than any collection of three things.

Such vague philosophic definitions, however, remained inoperative because of their very vagueness. What most men who thought about numbers really had in mind was that numbers are the result of counting. “On the consciousness of the law of counting,” says Sigwart  In dealing with this argument, we ought to substitute “the number of all finite numbers” for “the number of all numbers”; we then obtain exactly the illustration given by our two rows, one containing all the finite numbers, the other only the even finite numbers. It will be seen that Leibniz regards it as self-contradictory to maintain that the whole is not  The personages in the dialogue are Salviati, Sagredo, and Simplicius, and they reason as follows:

“Simp. Here already arises a Doubt which I think is not to be resolv'd; and that is this: Since 'tis plain that one Line is given greater than another, and since both contain infinite Points, we must surely necessarily infer, that we have found in the same Species something greater than Infinite, since the Infinity of Points of the greater Line exceeds the Infinity of Points of the lesser. But now, to assign an Infinite greater than an Infinite, is what I can't possibly conceive.“Salv. These are some of those Difficulties which arise from Discourses which our finite Understanding makes about Infinites, by ascribing to them Attributes which we give to Things finite and terminate, which I think most improper, because those Attributes of Majority, Minority, and Equality, agree not with Infinities, of which we can't say that one is greater than, less than, or equal to another. For Proof whereof I have something come  The definition of number was discovered about the same time by a man whose great genius has not received the recognition it deserves—I mean Gottlob Frege of Jena. His first work, Begriffsschrift, published in 1879, contained the very important theory of hereditary properties in a series to which I alluded in connection with inductiveness. His definition of number is contained in his second work, published in 1884, and entitled Die Grundlagen der Arithmetik, eine logisch-mathematische  It is with this book that the logical theory of arithmetic begins, and it will repay us to consider Frege's analysis in some detail.

Frege begins by noting the increased desire for logical strictness in mathematical demonstrations which distinguishes modern mathematicians from their predecessors, and points out that this must lead to a critical investigation of the definition of number. He proceeds to show the inadequacy of previous philosophical theories, especially of the “synthetic a priori” theory of Kant and the empirical theory of Mill. This brings him to the question: What kind of object is it that number can properly be ascribed to? He points out that physical things may be regarded as one or many: for example, if a tree has a thousand leaves, they may be taken altogether as constituting its foliage, which would count as one, not as a thousand; and one pair of boots is the same object as two boots. It follows that physical things are not the subjects of which number is properly predicated; for when we have discovered the proper subjects, the number to be ascribed must be unambiguous. This leads to a discussion of the very prevalent view that number is really something psychological and subjective, a view which Frege emphatically rejects. “Number,” he says, “is as little an object of psychology or an outcome of psychical processes as the North Sea…. The botanist wishes to state something which is just as much a fact when he gives the number of petals in a flower as when he gives its colour. The one depends as little as the other upon our caprice. There is therefore a certain  The author from whom I quote says that Hui Tzŭ “was particularly fond of the quibbles 

 This fact has a very important bearing on all logic and philosophy, since it shows how they differ from the special sciences. But the questions raised are so large and so difficult that it is impossible to pursue them further on this occasion.

About HackerNoon Book Series: We bring you the most important technical, scientific, and insightful public domain books.

This book is part of the public domain. Bertrand Russell (2011). Our Knowledge of the External World as a Field for Scientific Method in Philosophy. Urbana, Illinois: Project Gutenberg. Retrieved October 2022, from

This eBook is for the use of anyone anywhere at no cost and with almost no restrictions whatsoever. You may copy it, give it away or re-use it under the terms of the Project Gutenberg License included with this eBook or online at , located at

바카라사이트 바카라사이트 온라인바카라