visit
In April, Nvidia launched a new product, the RTX A4000 ADA, a small form factor GPU designed for workstation applications. This processor replaces the A2000 and can be used for complex tasks, including scientific research, engineering calculations, and data visualization.
When comparing the RTX 4000 SFF ADA GPUs to other devices in the same class, it should be noted that when running in single precision mode, it shows performance similar to the latest generation RTX A4000 GPU, which consumes twice as much power (140W vs. 70W).
According to the manufacturer, fourth-generation Tensor cores deliver high AI computational performance - a twofold increase in performance over the previous generation. The new Tensor cores support FP8 acceleration. This innovative feature may work well for those developing and deploying AI models in environments such as genomics and computer vision.
|
RTX A4000 ADA |
NVIDIA RTX A4000 |
NVIDIA RTX A5000 |
RTX 3090 |
---|---|---|---|---|
Architecture | Ada Lovelace | Ampere | Ampere | Ampere |
Tech Process | 5 nm | 8 nm | 8 nm | 8 nm |
GPU | AD104 | GA102 | GA104 | GA102 |
Number of transistors (millions) | 35,800 | 17,400 | 28,300 | 28,300 |
Memory bandwidth (Gb/s) | 280.0 | 448 | 768 | 936.2 |
Video memory capacity (bits) | 160 | 256 | 384 | 384 |
GPU memory (GB) | 20 | 16 | 24 | 24 |
Memory type | GDDR6 | GDDR6 | GDDR6 | GDDR6X |
CUDA cores | 6,144 | 6 144 | 8192 | 10496 |
Tensor cores | 192 | 192 | 256 | 328 |
RT cores | 48 | 48 | 64 | 82 |
SP perf (teraflops) | 19.2 | 19,2 | 27,8 | 35,6 |
RT core performance (teraflops) | 44.3 | 37,4 | 54,2 | 69,5 |
Tensor performance (teraflops) | 306.8 | 153,4 | 222,2 | 285 |
Maximum power (Watts) | 70 | 140 | 230 | 350 |
Interface | PCIe 4.0 x 16 | PCI-E 4.0 x16 | PCI-E 4.0 x16 | PCIe 4.0 x16 |
Connectors | 4x Mini DisplayPort 1.4a | DP 1.4 (4) | DP 1.4 (4) | DP 1.4 (4) |
Form Factor | 2 slots | 1 slot | 2 slots | 2-3 slots |
The vGPU software | no | no | Yes, unlimited | Yes. with limitations |
Nvlink | no | no | 2x RTX A5000 | yes |
CUDA support | 11.6 | 8.6 | 8.6 | 8.6 |
VULKAN support | 1.3 | yes | yes | yes, 1.2 |
Price (USD) | 1,250 | 1000 | 2500 | 1400 |
| RTX A4000 ADA | RTX A4000 |
---|---|---|
CPU | AMD Ryzen 9 5950X 3.4GHz (16 cores) | OctaCore Intel Xeon E-2288G, 3,5 GHz |
RAM | 4x 32 Gb DDR4 ECC SO-DIMM | 2x 32 GB DDR4-3200 ECC DDR4 SDRAM 1600 MHz |
Drive | 1Tb NVMe SSD | Samsung SSD 980 PRO 1TB |
Motherboard | ASRock X570D4I-2T | Asus P11C-I Series |
Operating System | Microsoft Windows 10 | Microsoft Windows 10 |
V-Ray 5 Benchmark
Machine Learning
"Dogs vs. Cats"
To compare the performance of GPUs for neural networks, we used the "Dogs vs. Cats" dataset - the test analyzes the content of a photo and distinguishes whether the photo shows a cat or a dog. All the necessary raw data can be found
In this test, the RTX A4000 ADA slightly outperformed the RTX A4000 by 9%, but keep in mind the small size and low power consumption of the new GPU.
|
RTX A4000 |
RTX A4000 ADA |
---|---|---|
1/19. MobileNet-V2 | 1.1 — inference | batch=50, size=224x224: 38.5 ± 2.4 ms1.2 — training | batch=50, size=224x224: 109 ± 4 ms | 1.1 — inference | batch=50, size=224x224: 53.5 ± 0.7 ms1.2 — training | batch=50, size=224x224: 130.1 ± 0.6 ms |
2/19. Inception-V3 | 2.1 — inference | batch=20, size=346x346: 36.1 ± 1.8 ms2.2 — training | batch=20, size=346x346: 137.4 ± 0.6 ms | 2.1 — inference | batch=20, size=346x346: 36.8 ± 1.1 ms2.2 — training | batch=20, size=346x346: 147.5 ± 0.8 ms |
3/19. Inception-V4 | 3.1 — inference | batch=10, size=346x346: 34.0 ± 0.9 ms3.2 — training | batch=10, size=346x346: 139.4 ± 1.0 ms | 3.1 — inference | batch=10, size=346x346: 33.0 ± 0.8 ms3.2 — training | batch=10, size=346x346: 135.7 ± 0.9 ms |
4/19. Inception-ResNet-V2 | 4.1 — inference | batch=10, size=346x346: 45.7 ± 0.6 ms4.2 — training | batch=8, size=346x346: 153.4 ± 0.8 ms | 4.1 — inference batch=10, size=346x346: 33.6 ± 0.7 ms4.2 — training batch=8, size=346x346: 132 ± 1 ms |
5/19. ResNet-V2-50 | 5.1 — inference | batch=10, size=346x346: 25.3 ± 0.5 ms5.2 — training | batch=10, size=346x346: 91.1 ± 0.8 ms | 5.1 — inference | batch=10, size=346x346: 26.1 ± 0.5 ms5.2 — training | batch=10, size=346x346: 92.3 ± 0.6 ms |
6/19. ResNet-V2-152 | 6.1 — inference | batch=10, size=256x256: 32.4 ± 0.5 ms6.2 — training | batch=10, size=256x256: 131.4 ± 0.7 ms | 6.1 — inference | batch=10, size=256x256: 23.7 ± 0.6 ms6.2 — training | batch=10, size=256x256: 107.1 ± 0.9 ms |
7/19. VGG-16 | 7.1 — inference | batch=20, size=224x224: 54.9 ± 0.9 ms7.2 — training | batch=2, size=224x224: 83.6 ± 0.7 ms | 7.1 — inference | batch=20, size=224x224: 66.3 ± 0.9 ms7.2 — training | batch=2, size=224x224: 109.3 ± 0.8 ms |
8/19. SRCNN 9-5-5 | 8.1 — inference | batch=10, size=512x512: 51.5 ± 0.9 ms8.2 — inference | batch=1, size=1536x1536: 45.7 ± 0.9 ms8.3 — training | batch=10, size=512x512: 183 ± 1 ms | 8.1 — inference | batch=10, size=512x512: 59.9 ± 1.6 ms8.2 — inference | batch=1, size=1536x1536: 53.1 ± 0.7 ms8.3 — training | batch=10, size=512x512: 176 ± 2 ms |
9/19. VGG-19 Super-Res | 9.1 — inference | batch=10, size=256x256: 99.5 ± 0.8 ms9.2 — inference | batch=1, size=1024x1024: 162 ± 1 ms9.3 — training | batch=10, size=224x224: 204 ± 2 ms |
|
10/19. ResNet-SRGAN | 10.1 — inference | batch=10, size=512x512: 85.8 ± 0.6 ms10.2 — inference | batch=1, size=1536x1536: 82.4 ± 1.9 ms10.3 — training | batch=5, size=512x512: 133 ± 1 ms | 10.1 — inference | batch=10, size=512x512: 98.9 ± 0.8 ms10.2 — inference | batch=1, size=1536x1536: 86.1 ± 0.6 ms10.3 — training | batch=5, size=512x512: 130.9 ± 0.6 ms |
11/19. ResNet-DPED | 11.1 — inference | batch=10, size=256x256: 114.9 ± 0.6 ms11.2 — inference | batch=1, size=1024x1024: 182 ± 2 ms11.3 — training | batch=15, size=128x128: 178.1 ± 0.8 ms | 11.1 — inference | batch=10, size=256x256: 146.4 ± 0.5 ms11.2 — inference | batch=1, size=1024x1024: 234.3 ± 0.5 ms11.3 — training | batch=15, size=128x128: 234.7 ± 0.6 ms |
12/19. U-Net | 12.1 — inference | batch=4, size=512x512: 180.8 ± 0.7 ms12.2 — inference | batch=1, size=1024x1024: 177.0 ± 0.4 ms12.3 — training | batch=4, size=256x256: 198.6 ± 0.5 ms | 12.1 — inference | batch=4, size=512x512: 222.9 ± 0.5 ms12.2 — inference | batch=1, size=1024x1024: 220.4 ± 0.6 ms12.3 — training | batch=4, size=256x256: 229.1 ± 0.7 ms |
13/19. Nvidia-SPADE | 13.1 — inference | batch=5, size=128x128: 54.5 ± 0.5 ms13.2 — training | batch=1, size=128x128: 103.6 ± 0.6 ms | 13.1 — inference | batch=5, size=128x128: 59.6 ± 0.6 ms13.2 — training | batch=1, size=128x128: 94.6 ± 0.6 ms |
14/19. ICNet | 14.1 — inference | batch=5, size=1024x1536: 126.3 ± 0.8 ms14.2 — training | batch=10, size=1024x1536: 426 ± 9 ms | 14.1 — inference | batch=5, size=1024x1536: 144 ± 4 ms14.2 — training | batch=10, size=1024x1536: 475 ± 17 ms |
15/19. PSPNet | 15.1 — inference | batch=5, size=720x720: 249 ± 12 ms15.2 — training | batch=1, size=512x512: 104.6 ± 0.6 ms | 15.1 — inference | batch=5, size=720x720: 291.4 ± 0.5 ms15.2 — training | batch=1, size=512x512: 99.8 ± 0.9 ms |
16/19. DeepLab | 16.1 — inference | batch=2, size=512x512: 71.7 ± 0.6 ms16.2 — training | batch=1, size=384x384: 84.9 ± 0.5 ms | 16.1 — inference | batch=2, size=512x512: 71.5 ± 0.7 ms16.2 — training | batch=1, size=384x384: 69.4 ± 0.6 ms |
17/19. Pixel-RNN | 17.1 — inference | batch=50, size=64x64: 299 ± 14 ms17.2 — training | batch=10, size=64x64: 1258 ± 64 ms | 17.1 — inference | batch=50, size=64x64: 321 ± 30 ms17.2 — training | batch=10, size=64x64: 1278 ± 74 ms |
18/19. LSTM-Sentiment | 18.1 — inference | batch=100, size=1024x300: 395 ± 11 ms18.2 — training | batch=10, size=1024x300: 676 ± 15 ms | 18.1 — inference | batch=100, size=1024x300: 345 ± 10 ms18.2 — training | batch=10, size=1024x300: 774 ± 17 ms |
19/19. GNMT-Translation | 19.1 — inference | batch=1, size=1x20: 119 ± 2 ms | 19.1 — inference | batch=1, size=1x20: 156 ± 1 ms |
Benchmarking |
Model average train time (ms) |
---|---|
Training double precision type mnasnet0_5 | 62.995805740356445 |
Training double precision type mnasnet0_75 | 98.39066505432129 |
Training double precision type mnasnet1_0 | 126.60405158996582 |
Training double precision type mnasnet1_3 | 186.89460277557373 |
Training double precision type resnet18 | 428.08079719543457 |
Training double precision type resnet34 | 883.5790348052979 |
Training double precision type resnet50 | 1016.3950300216675 |
Training double precision type resnet101 | 1927.2308254241943 |
Training double precision type resnet152 | 2815.663013458252 |
Training double precision type resnext50_32x4d | 1075.4373741149902 |
Training double precision type resnext101_32x8d | 4050.0641918182373 |
Training double precision type wide_resnet50_2 | 2615.9953451156616 |
Training double precision type wide_resnet101_2 | 5218.524832725525 |
Training double precision type densenet121 | 751.9759511947632 |
Training double precision type densenet169 | 910.3225564956665 |
Training double precision type densenet201 | 1163.036551475525 |
Training double precision type densenet161 | 2141.505298614502 |
Training double precision type squeezenet1_0 | 203.988 |
Training double precision type squeezenet1_1 | 98.04857730865479 |
Training double precision type vgg11 | 1697.7 |
Training double precision type vgg11_bn | 1729.2972660064697 |
Training double precision type vgg13 | 2491.6 |
Training double precision type vgg13_bn | 2545.34 |
Training double precision type vgg16 | 3371.68 |
Training double precision type vgg16_bn | 3423.8639068603516 |
Training double precision type vgg19_bn | 4314.55 |
Training double precision type vgg19 | 4249.422650337219 |
Training double precision type mobilenet_v3_large | 105.546 |
Training double precision type mobilenet_v3_small | 37.6680850982666 |
Training double precision type shufflenet_v2_x0_5 | 26.51611328125 |
Training double precision type shufflenet_v2_x1_0 | 61.260504722595215 |
Training double precision type shufflenet_v2_x1_5 | 105.30067920684814 |
Training double precision type shufflenet_v2_x2_0 | 181.03694438934326 |
Inference double precision type mnasnet0_5 | 17.397074699401855 |
Inference double precision type mnasnet0_75 | 28.902697563171387 |
Inference double precision type mnasnet1_0 | 38.3877 |
Inference double precision type mnasnet1_3 | 58.228821754455566 |
Inference double precision type resnet18 | 147.95727252960205 |
Inference double precision type resnet34 | 293.5 |
Inference double precision type resnet50 | 336.44991874694824 |
Inference double precision type resnet101 | 637.9982376098633 |
Inference double precision type resnet152 | 948.9351654052734 |
Inference double precision type resnext50_32x4d | 372.80876636505127 |
Inference double precision type resnext101_32x8d | 1385.09 |
Inference double precision type wide_resnet50_2 | 873.048791885376 |
Inference double precision type wide_resnet101_2 | 1729.2765426635742 |
Inference double precision type densenet121 | 270.354 |
Inference double precision type densenet169 | 327.06 |
Inference double precision type densenet201 | 414.733362197876 |
Inference double precision type densenet161 | 766.3542318344116 |
Inference double precision type squeezenet1_0 | 74.86292839050293 |
Inference double precision type squeezenet1_1 | 34.04905319213867 |
Inference double precision type vgg11 | 576.3767147064209 |
Inference double precision type vgg11_bn | 580.5839586257935 |
Inference double precision type vgg13 | 853.4365510940552 |
Inference double precision type vgg13_bn | 860.39 |
Inference double precision type vgg16 | 1145.091052055359 |
Inference double precision type vgg16_bn | 1152.8028392791748 |
Inference double precision type vgg19_bn | 1444.9562692642212 |
Inference double precision type vgg19 | 1437.0987701416016 |
Inference double precision type mobilenet_v3_large | 30.8763 |
Inference double precision type mobilenet_v3_small | 11.234536170959473 |
Inference double precision type shufflenet_v2_x0_5 | 7.425284385681152 |
Inference double precision type shufflenet_v2_x1_0 | 18.25782299041748 |
Inference double precision type shufflenet_v2_x1_5 | 33.34946632385254 |
Inference double precision type shufflenet_v2_x2_0 | 57.84676551818848 |
Benchmarking |
Model average train time |
---|---|
Training half precision type mnasnet0_5 | 20.2666 |
Training half precision type mnasnet0_75 | 21.445374488830566 |
Training half precision type mnasnet1_0 | 26.7625 |
Training half precision type mnasnet1_3 | 26.57 |
Training half precision type resnet18 | 19.624991416931152 |
Training half precision type resnet34 | 32.46446132659912 |
Training half precision type resnet50 | 57.332 |
Training half precision type resnet101 | 98.209 |
Training half precision type resnet152 | 138.967 |
Training half precision type resnext50_32x4d | 75.56005001068115 |
Training half precision type resnext101_32x8d | 228.8706636428833 |
Training half precision type wide_resnet50_2 | 113.76442432403564 |
Training half precision type wide_resnet101_2 | 204.838 |
Training half precision type densenet121 | 68.97401332855225 |
Training half precision type densenet169 | 85.957 |
Training half precision type densenet201 | 103.299241065979 |
Training half precision type densenet161 | 137.54578113555908 |
Training half precision type squeezenet1_0 | 16.729 |
Training half precision type squeezenet1_1 | 12.906527519226074 |
Training half precision type vgg11 | 51.7004919052124 |
Training half precision type vgg11_bn | 57.63327598571777 |
Training half precision type vgg13 | 86.809 |
Training half precision type vgg13_bn | 95.86676120758057 |
Training half precision type vgg16 | 102.918 |
Training half precision type vgg16_bn | 113.74778270721436 |
Training half precision type vgg19_bn | 131.56734943389893 |
Training half precision type vgg19 | 119.706 |
Training half precision type mobilenet_v3_large | 31.30636692047119 |
Training half precision type mobilenet_v3_small | 19.44464683532715 |
Training half precision type shufflenet_v2_x0_5 | 13.7766 |
Training half precision type shufflenet_v2_x1_0 | 23.608479499816895 |
Training half precision type shufflenet_v2_x1_5 | 26.793746948242188 |
Training half precision type shufflenet_v2_x2_0 | 24.550962448120117 |
Inference half precision type mnasnet0_5 | 4.4934 |
Inference half precision type mnasnet0_75 | 4.0253 |
Inference half precision type mnasnet1_0 | 4.42598819732666 |
Inference half precision type mnasnet1_3 | 4.6809 |
Inference half precision type resnet18 | 5.803341865539551 |
Inference half precision type resnet34 | 9.756693840026855 |
Inference half precision type resnet50 | 15.873079299926758 |
Inference half precision type resnet101 | 28.268003463745117 |
Inference half precision type resnet152 | 40.04594326019287 |
Inference half precision type resnext50_32x4d | 19.53421115875244 |
Inference half precision type resnext101_32x8d | 62.44826316833496 |
Inference half precision type wide_resnet50_2 | 33.533992767333984 |
Inference half precision type wide_resnet101_2 | 59.60897445678711 |
Inference half precision type densenet121 | 18.052735328674316 |
Inference half precision type densenet169 | 21.956982612609863 |
Inference half precision type densenet201 | 27.851 |
Inference half precision type densenet161 | 37.414 |
Inference half precision type squeezenet1_0 | 4.3978 |
Inference half precision type squeezenet1_1 | 2.42833 |
Inference half precision type vgg11 | 17.623 |
Inference half precision type vgg11_bn | 18.40585231781006 |
Inference half precision type vgg13 | 28.4386 |
Inference half precision type vgg13_bn | 30.672597885131836 |
Inference half precision type vgg16 | 34.43562984466553 |
Inference half precision type vgg16_bn | 36.929 |
Inference half precision type vgg19_bn | 43.1406 |
Inference half precision type vgg19 | 40.5385684967041 |
Inference half precision type mobilenet_v3_large | 5.3507 |
Inference half precision type mobilenet_v3_small | 4.0512 |
Inference half precision type shufflenet_v2_x0_5 | 5.0797 |
Inference half precision type shufflenet_v2_x1_0 | 5.5935 |
Inference half precision type shufflenet_v2_x1_5 | 5.649552345275879 |
Inference half precision type shufflenet_v2_x2_0 | 5.355663299560547 |
Training double precision type mnasnet0_5 | 50.2386999130249 |
Training double precision type mnasnet0_75 | 80.66896915435791 |
Training double precision type mnasnet1_0 | 103.32422733306885 |
Training double precision type mnasnet1_3 | 154.6230697631836 |
Training double precision type resnet18 | 337.94031620025635 |
Training double precision type resnet34 | 677.7706575393677 |
Training double precision type resnet50 | 789.9243211746216 |
Training double precision type resnet101 | 1484.3351316452026 |
Training double precision type resnet152 | 2170.570478439331 |
Training double precision type resnext50_32x4d | 877.37 |
Training double precision type resnext101_32x8d | 3652.4944639205933 |
Training double precision type wide_resnet50_2 | 2154.6 |
Training double precision type wide_resnet101_2 | 4176.522083282471 |
Training double precision type densenet121 | 607.8699731826782 |
Training double precision type densenet169 | 744.6409797668457 |
Training double precision type densenet201 | 962.677731513977 |
Training double precision type densenet161 | 1759.772515296936 |
Training double precision type squeezenet1_0 | 164.3690824508667 |
Training double precision type squeezenet1_1 | 78.70647430419922 |
Training double precision type vgg11 | 1362.6095294952393 |
Training double precision type vgg11_bn | 1387.2539138793945 |
Training double precision type vgg13 | 2006.0230445861816 |
Training double precision type vgg13_bn | 2047.526364326477 |
Training double precision type vgg16 | 2702.2086429595947 |
Training double precision type vgg16_bn | 2747.241234779358 |
Training double precision type vgg19_bn | 3447.34 |
Training double precision type vgg19 | 3397.990345954895 |
Training double precision type mobilenet_v3_large | 84.65698719024658 |
Training double precision type mobilenet_v3_small | 29.8617 |
Training double precision type shufflenet_v2_x0_5 | 27.4073 |
Training double precision type shufflenet_v2_x1_0 | 48.322744369506836 |
Training double precision type shufflenet_v2_x1_5 | 82.224 |
Training double precision type shufflenet_v2_x2_0 | 141.7021369934082 |
Inference double precision type mnasnet0_5 | 12.988653182983398 |
Inference double precision type mnasnet0_75 | 22.4228 |
Inference double precision type mnasnet1_0 | 30.056486129760742 |
Inference double precision type mnasnet1_3 | 46.953935623168945 |
Inference double precision type resnet18 | 118.04479122161865 |
Inference double precision type resnet34 | 231.52336597442627 |
Inference double precision type resnet50 | 268.63497734069824 |
Inference double precision type resnet101 | 495.20 |
Inference double precision type resnet152 | 726.4922094345093 |
Inference double precision type resnext50_32x4d | 291.47679328918457 |
Inference double precision type resnext101_32x8d | 1055. |
Inference double precision type wide_resnet50_2 | 690.69 |
Inference double precision type wide_resnet101_2 | 1347.5529861450195 |
Inference double precision type densenet121 | 224.35829639434814 |
Inference double precision type densenet169 | 268.94 |
Inference double precision type densenet201 | 343.51 |
Inference double precision type densenet161 | 635.866231918335 |
Inference double precision type squeezenet1_0 | 61.92759037017822 |
Inference double precision type squeezenet1_1 | 27.0094 |
Inference double precision type vgg11 | 462.3375129699707 |
Inference double precision type vgg11_bn | 468.4495782852173 |
Inference double precision type vgg13 | 692.82 |
Inference double precision type vgg13_bn | 703.3538103103638 |
Inference double precision type vgg16 | 924.4353818893433 |
Inference double precision type vgg16_bn | 936.5075063705444 |
Inference double precision type vgg19_bn | 1169.098300933838 |
Inference double precision type vgg19 | 1156.3771772384644 |
Inference double precision type mobilenet_v3_large | 24.2356014251709 |
Inference double precision type mobilenet_v3_small | 8.85490894317627 |
Inference double precision type shufflenet_v2_x0_5 | 6.360034942626953 |
Inference double precision type shufflenet_v2_x1_0 | 14.3054 |
Inference double precision type shufflenet_v2_x1_5 | 24.863481521606445 |
Inference double precision type shufflenet_v2_x2_0 | 43.8505744934082 |