paint-brush
Can the Nvidia RTX A4000 ADA Handle Machine Learning Tasks? by@hostkey
3,026 reads
3,026 reads

Can the Nvidia RTX A4000 ADA Handle Machine Learning Tasks?

by Hostkey.comJune 29th, 2023
Read on Terminal Reader
Read this story w/o Javascript

Too Long; Didn't Read

In April, Nvidia launched a new product, the RTX A4000 ADA, a small form factor GPU designed for workstation applications. This processor replaces the A2000 and can be used for complex tasks, including scientific research, engineering calculations, and data visualization. The new GPU's 20GB memory capacity enables it to handle large environments.

People Mentioned

Mention Thumbnail
featured image - Can the Nvidia RTX A4000 ADA Handle Machine Learning Tasks?
Hostkey.com HackerNoon profile picture

In April, Nvidia launched a new product, the RTX A4000 ADA, a small form factor GPU designed for workstation applications. This processor replaces the A2000 and can be used for complex tasks, including scientific research, engineering calculations, and data visualization.


The RTX A4000 ADA features 6,144 CUDA cores, 192 Tensor and 48 RT cores, and 20GB GDDR6 ECC VRAM. One of the key benefits of the new GPU is its power efficiency: the RTX A4000 ADA consumes only 70W, which lowers both power costs and system heat. The GPU also allows you to drive multiple displays thanks to its 4x Mini-DisplayPort 1.4a connectivity.





When comparing the RTX 4000 SFF ADA GPUs to other devices in the same class, it should be noted that when running in single precision mode, it shows performance similar to the latest generation RTX A4000 GPU, which consumes twice as much power (140W vs. 70W).





The ADA RTX 4000 SFF is built on the ADA Lovelace architecture and 5nm process technology. This enables next-generation Tensor Core and ray tracing cores, which significantly improve performance by providing faster and more efficient ray tracing and Tensor cores than the RTX A4000. In addition, ADA's RTX 4000 SFF comes in a small package - the card is 168mm long and as thick as two expansion slots.





Improved ray tracing kernels allows for efficient performance in environments where the technology is used, such as in 3D design and rendering. Furthermore, the new GPU's 20GB memory capacity enables it to handle large environments.





According to the manufacturer, fourth-generation Tensor cores deliver high AI computational performance - a twofold increase in performance over the previous generation. The new Tensor cores support FP8 acceleration. This innovative feature may work well for those developing and deploying AI models in environments such as genomics and computer vision.


It's also of note that the increase in encoding and decoding mechanisms makes the RTX 4000 SFF ADA a good solution for multimedia workloads such as video among others.



Technical specifications of NVIDIA RTX A4000 and RTX A5000 graphics cards, RTX 3090


RTX A4000 ADA

NVIDIA RTX A4000

NVIDIA RTX A5000

RTX 3090

Architecture

Ada Lovelace Ampere Ampere Ampere

Tech Process

5 nm 8 nm 8 nm 8 nm

GPU

AD104 GA102 GA104 GA102

Number of transistors (millions)

35,800 17,400 28,300 28,300

Memory bandwidth (Gb/s)

280.0 448 768 936.2

Video memory capacity (bits)

160 256 384 384

GPU memory (GB)

20 16 24 24

Memory type

GDDR6 GDDR6 GDDR6 GDDR6X

CUDA cores

6,144 6 144 8192 10496

Tensor cores

192 192 256 328

RT cores

48 48 64 82

SP perf (teraflops)

19.2 19,2 27,8 35,6

RT core performance (teraflops)

44.3 37,4 54,2 69,5

Tensor performance (teraflops)

306.8 153,4 222,2 285

Maximum power (Watts)

70 140 230 350

Interface

PCIe 4.0 x 16 PCI-E 4.0 x16 PCI-E 4.0 x16 PCIe 4.0 x16

Connectors

4x Mini DisplayPort 1.4a DP 1.4 (4) DP 1.4 (4) DP 1.4 (4)

Form Factor

2 slots 1 slot 2 slots 2-3 slots

The vGPU software

no no Yes, unlimited Yes. with limitations

Nvlink

no no 2x RTX A5000 yes

CUDA support

11.6 8.6 8.6 8.6

VULKAN support

1.3 yes yes yes, 1.2

Price (USD)

1,250 1000 2500 1400



Description of the test environment


RTX A4000 ADA RTX A4000
CPU AMD Ryzen 9 5950X 3.4GHz (16 cores) OctaCore Intel Xeon E-2288G, 3,5 GHz
RAM 4x 32 Gb DDR4 ECC SO-DIMM 2x 32 GB DDR4-3200 ECC DDR4 SDRAM 1600 MHz
Drive 1Tb NVMe SSD Samsung SSD 980 PRO 1TB
Motherboard ASRock X570D4I-2T Asus P11C-I Series
Operating System Microsoft Windows 10 Microsoft Windows 10



Test results


V-Ray 5 Benchmark

Points scored


Points scored


V-Ray GPU CUDA and RTX tests measure relative GPU rendering performance. The RTX A4000 GPU is slightly behind the RTX A4000 ADA (4% and 11%, respectively).


Machine Learning


"Dogs vs. Cats"

To compare the performance of GPUs for neural networks, we used the "Dogs vs. Cats" dataset - the test analyzes the content of a photo and distinguishes whether the photo shows a cat or a dog. All the necessary raw data can be found . We ran this test on different GPUs and cloud services and got the following results:


In this test, the RTX A4000 ADA slightly outperformed the RTX A4000 by 9%, but keep in mind the small size and low power consumption of the new GPU.




AI-Benchmark allows you to measure the performance of the device during an AI model output task. The unit of measurement may vary according to the test, but usually it is the number of operations per second (OPS) or the number of frames per second (FPS).


Points scored




RTX A4000

RTX A4000 ADA

1/19. MobileNet-V2

1.1 — inference | batch=50, size=224x224: 38.5 ± 2.4 ms1.2 — training | batch=50, size=224x224: 109 ± 4 ms 1.1 — inference | batch=50, size=224x224: 53.5 ± 0.7 ms1.2 — training | batch=50, size=224x224: 130.1 ± 0.6 ms

2/19. Inception-V3

2.1 — inference | batch=20, size=346x346: 36.1 ± 1.8 ms2.2 — training | batch=20, size=346x346: 137.4 ± 0.6 ms 2.1 — inference | batch=20, size=346x346: 36.8 ± 1.1 ms2.2 — training | batch=20, size=346x346: 147.5 ± 0.8 ms

3/19. Inception-V4

3.1 — inference | batch=10, size=346x346: 34.0 ± 0.9 ms3.2 — training | batch=10, size=346x346: 139.4 ± 1.0 ms 3.1 — inference | batch=10, size=346x346: 33.0 ± 0.8 ms3.2 — training | batch=10, size=346x346: 135.7 ± 0.9 ms

4/19. Inception-ResNet-V2

4.1 — inference | batch=10, size=346x346: 45.7 ± 0.6 ms4.2 — training | batch=8, size=346x346: 153.4 ± 0.8 ms 4.1 — inference batch=10, size=346x346: 33.6 ± 0.7 ms4.2 — training batch=8, size=346x346: 132 ± 1 ms

5/19. ResNet-V2-50

5.1 — inference | batch=10, size=346x346: 25.3 ± 0.5 ms5.2 — training | batch=10, size=346x346: 91.1 ± 0.8 ms 5.1 — inference | batch=10, size=346x346: 26.1 ± 0.5 ms5.2 — training | batch=10, size=346x346: 92.3 ± 0.6 ms

6/19. ResNet-V2-152

6.1 — inference | batch=10, size=256x256: 32.4 ± 0.5 ms6.2 — training | batch=10, size=256x256: 131.4 ± 0.7 ms 6.1 — inference | batch=10, size=256x256: 23.7 ± 0.6 ms6.2 — training | batch=10, size=256x256: 107.1 ± 0.9 ms

7/19. VGG-16

7.1 — inference | batch=20, size=224x224: 54.9 ± 0.9 ms7.2 — training | batch=2, size=224x224: 83.6 ± 0.7 ms 7.1 — inference | batch=20, size=224x224: 66.3 ± 0.9 ms7.2 — training | batch=2, size=224x224: 109.3 ± 0.8 ms

8/19. SRCNN 9-5-5

8.1 — inference | batch=10, size=512x512: 51.5 ± 0.9 ms8.2 — inference | batch=1, size=1536x1536: 45.7 ± 0.9 ms8.3 — training | batch=10, size=512x512: 183 ± 1 ms 8.1 — inference | batch=10, size=512x512: 59.9 ± 1.6 ms8.2 — inference | batch=1, size=1536x1536: 53.1 ± 0.7 ms8.3 — training | batch=10, size=512x512: 176 ± 2 ms

9/19. VGG-19 Super-Res

9.1 — inference | batch=10, size=256x256: 99.5 ± 0.8 ms9.2 — inference | batch=1, size=1024x1024: 162 ± 1 ms9.3 — training | batch=10, size=224x224: 204 ± 2 ms


10/19. ResNet-SRGAN

10.1 — inference | batch=10, size=512x512: 85.8 ± 0.6 ms10.2 — inference | batch=1, size=1536x1536: 82.4 ± 1.9 ms10.3 — training | batch=5, size=512x512: 133 ± 1 ms 10.1 — inference | batch=10, size=512x512: 98.9 ± 0.8 ms10.2 — inference | batch=1, size=1536x1536: 86.1 ± 0.6 ms10.3 — training | batch=5, size=512x512: 130.9 ± 0.6 ms

11/19. ResNet-DPED

11.1 — inference | batch=10, size=256x256: 114.9 ± 0.6 ms11.2 — inference | batch=1, size=1024x1024: 182 ± 2 ms11.3 — training | batch=15, size=128x128: 178.1 ± 0.8 ms 11.1 — inference | batch=10, size=256x256: 146.4 ± 0.5 ms11.2 — inference | batch=1, size=1024x1024: 234.3 ± 0.5 ms11.3 — training | batch=15, size=128x128: 234.7 ± 0.6 ms

12/19. U-Net

12.1 — inference | batch=4, size=512x512: 180.8 ± 0.7 ms12.2 — inference | batch=1, size=1024x1024: 177.0 ± 0.4 ms12.3 — training | batch=4, size=256x256: 198.6 ± 0.5 ms 12.1 — inference | batch=4, size=512x512: 222.9 ± 0.5 ms12.2 — inference | batch=1, size=1024x1024: 220.4 ± 0.6 ms12.3 — training | batch=4, size=256x256: 229.1 ± 0.7 ms

13/19. Nvidia-SPADE

13.1 — inference | batch=5, size=128x128: 54.5 ± 0.5 ms13.2 — training | batch=1, size=128x128: 103.6 ± 0.6 ms 13.1 — inference | batch=5, size=128x128: 59.6 ± 0.6 ms13.2 — training | batch=1, size=128x128: 94.6 ± 0.6 ms

14/19. ICNet

14.1 — inference | batch=5, size=1024x1536: 126.3 ± 0.8 ms14.2 — training | batch=10, size=1024x1536: 426 ± 9 ms 14.1 — inference | batch=5, size=1024x1536: 144 ± 4 ms14.2 — training | batch=10, size=1024x1536: 475 ± 17 ms

15/19. PSPNet

15.1 — inference | batch=5, size=720x720: 249 ± 12 ms15.2 — training | batch=1, size=512x512: 104.6 ± 0.6 ms 15.1 — inference | batch=5, size=720x720: 291.4 ± 0.5 ms15.2 — training | batch=1, size=512x512: 99.8 ± 0.9 ms

16/19. DeepLab

16.1 — inference | batch=2, size=512x512: 71.7 ± 0.6 ms16.2 — training | batch=1, size=384x384: 84.9 ± 0.5 ms 16.1 — inference | batch=2, size=512x512: 71.5 ± 0.7 ms16.2 — training | batch=1, size=384x384: 69.4 ± 0.6 ms

17/19. Pixel-RNN

17.1 — inference | batch=50, size=64x64: 299 ± 14 ms17.2 — training | batch=10, size=64x64: 1258 ± 64 ms 17.1 — inference | batch=50, size=64x64: 321 ± 30 ms17.2 — training | batch=10, size=64x64: 1278 ± 74 ms

18/19. LSTM-Sentiment

18.1 — inference | batch=100, size=1024x300: 395 ± 11 ms18.2 — training | batch=10, size=1024x300: 676 ± 15 ms 18.1 — inference | batch=100, size=1024x300: 345 ± 10 ms18.2 — training | batch=10, size=1024x300: 774 ± 17 ms

19/19. GNMT-Translation

19.1 — inference | batch=1, size=1x20: 119 ± 2 ms 19.1 — inference | batch=1, size=1x20: 156 ± 1 ms


The results of this test show that the performance of the RTX A4000 is 6% higher than RTX A4000 ADA, however, with the caveat that the test results may vary depending on the specific task and operating conditions employed.



RTX A 4000

Benchmarking

Model average train time (ms)

Training double precision type mnasnet0_5 62.995805740356445
Training double precision type mnasnet0_75 98.39066505432129
Training double precision type mnasnet1_0 126.60405158996582
Training double precision type mnasnet1_3 186.89460277557373
Training double precision type resnet18 428.08079719543457
Training double precision type resnet34 883.5790348052979
Training double precision type resnet50 1016.3950300216675
Training double precision type resnet101 1927.2308254241943
Training double precision type resnet152 2815.663013458252
Training double precision type resnext50_32x4d 1075.4373741149902
Training double precision type resnext101_32x8d 4050.0641918182373
Training double precision type wide_resnet50_2 2615.9953451156616
Training double precision type wide_resnet101_2 5218.524832725525
Training double precision type densenet121 751.9759511947632
Training double precision type densenet169 910.3225564956665
Training double precision type densenet201 1163.036551475525
Training double precision type densenet161 2141.505298614502
Training double precision type squeezenet1_0 203.988
Training double precision type squeezenet1_1 98.04857730865479
Training double precision type vgg11 1697.7
Training double precision type vgg11_bn 1729.2972660064697
Training double precision type vgg13 2491.6
Training double precision type vgg13_bn 2545.34
Training double precision type vgg16 3371.68
Training double precision type vgg16_bn 3423.8639068603516
Training double precision type vgg19_bn 4314.55
Training double precision type vgg19 4249.422650337219
Training double precision type mobilenet_v3_large 105.546
Training double precision type mobilenet_v3_small 37.6680850982666
Training double precision type shufflenet_v2_x0_5 26.51611328125
Training double precision type shufflenet_v2_x1_0 61.260504722595215
Training double precision type shufflenet_v2_x1_5 105.30067920684814
Training double precision type shufflenet_v2_x2_0 181.03694438934326
Inference double precision type mnasnet0_5 17.397074699401855
Inference double precision type mnasnet0_75 28.902697563171387
Inference double precision type mnasnet1_0 38.3877
Inference double precision type mnasnet1_3 58.228821754455566
Inference double precision type resnet18 147.95727252960205
Inference double precision type resnet34 293.5
Inference double precision type resnet50 336.44991874694824
Inference double precision type resnet101 637.9982376098633
Inference double precision type resnet152 948.9351654052734
Inference double precision type resnext50_32x4d 372.80876636505127
Inference double precision type resnext101_32x8d 1385.09
Inference double precision type wide_resnet50_2 873.048791885376
Inference double precision type wide_resnet101_2 1729.2765426635742
Inference double precision type densenet121 270.354
Inference double precision type densenet169 327.06
Inference double precision type densenet201 414.733362197876
Inference double precision type densenet161 766.3542318344116
Inference double precision type squeezenet1_0 74.86292839050293
Inference double precision type squeezenet1_1 34.04905319213867
Inference double precision type vgg11 576.3767147064209
Inference double precision type vgg11_bn 580.5839586257935
Inference double precision type vgg13 853.4365510940552
Inference double precision type vgg13_bn 860.39
Inference double precision type vgg16 1145.091052055359
Inference double precision type vgg16_bn 1152.8028392791748
Inference double precision type vgg19_bn 1444.9562692642212
Inference double precision type vgg19 1437.0987701416016
Inference double precision type mobilenet_v3_large 30.8763
Inference double precision type mobilenet_v3_small 11.234536170959473
Inference double precision type shufflenet_v2_x0_5 7.425284385681152
Inference double precision type shufflenet_v2_x1_0 18.25782299041748
Inference double precision type shufflenet_v2_x1_5 33.34946632385254
Inference double precision type shufflenet_v2_x2_0 57.84676551818848


RTX A4000 ADA


Benchmarking

Model average train time

Training half precision type mnasnet0_5 20.2666
Training half precision type mnasnet0_75 21.445374488830566
Training half precision type mnasnet1_0 26.7625
Training half precision type mnasnet1_3 26.57
Training half precision type resnet18 19.624991416931152
Training half precision type resnet34 32.46446132659912
Training half precision type resnet50 57.332
Training half precision type resnet101 98.209
Training half precision type resnet152 138.967
Training half precision type resnext50_32x4d 75.56005001068115
Training half precision type resnext101_32x8d 228.8706636428833
Training half precision type wide_resnet50_2 113.76442432403564
Training half precision type wide_resnet101_2 204.838
Training half precision type densenet121 68.97401332855225
Training half precision type densenet169 85.957
Training half precision type densenet201 103.299241065979
Training half precision type densenet161 137.54578113555908
Training half precision type squeezenet1_0 16.729
Training half precision type squeezenet1_1 12.906527519226074
Training half precision type vgg11 51.7004919052124
Training half precision type vgg11_bn 57.63327598571777
Training half precision type vgg13 86.809
Training half precision type vgg13_bn 95.86676120758057
Training half precision type vgg16 102.918
Training half precision type vgg16_bn 113.74778270721436
Training half precision type vgg19_bn 131.56734943389893
Training half precision type vgg19 119.706
Training half precision type mobilenet_v3_large 31.30636692047119
Training half precision type mobilenet_v3_small 19.44464683532715
Training half precision type shufflenet_v2_x0_5 13.7766
Training half precision type shufflenet_v2_x1_0 23.608479499816895
Training half precision type shufflenet_v2_x1_5 26.793746948242188
Training half precision type shufflenet_v2_x2_0 24.550962448120117
Inference half precision type mnasnet0_5 4.4934
Inference half precision type mnasnet0_75 4.0253
Inference half precision type mnasnet1_0 4.42598819732666
Inference half precision type mnasnet1_3 4.6809
Inference half precision type resnet18 5.803341865539551
Inference half precision type resnet34 9.756693840026855
Inference half precision type resnet50 15.873079299926758
Inference half precision type resnet101 28.268003463745117
Inference half precision type resnet152 40.04594326019287
Inference half precision type resnext50_32x4d 19.53421115875244
Inference half precision type resnext101_32x8d 62.44826316833496
Inference half precision type wide_resnet50_2 33.533992767333984
Inference half precision type wide_resnet101_2 59.60897445678711
Inference half precision type densenet121 18.052735328674316
Inference half precision type densenet169 21.956982612609863
Inference half precision type densenet201 27.851
Inference half precision type densenet161 37.414
Inference half precision type squeezenet1_0 4.3978
Inference half precision type squeezenet1_1 2.42833
Inference half precision type vgg11 17.623
Inference half precision type vgg11_bn 18.40585231781006
Inference half precision type vgg13 28.4386
Inference half precision type vgg13_bn 30.672597885131836
Inference half precision type vgg16 34.43562984466553
Inference half precision type vgg16_bn 36.929
Inference half precision type vgg19_bn 43.1406
Inference half precision type vgg19 40.5385684967041
Inference half precision type mobilenet_v3_large 5.3507
Inference half precision type mobilenet_v3_small 4.0512
Inference half precision type shufflenet_v2_x0_5 5.0797
Inference half precision type shufflenet_v2_x1_0 5.5935
Inference half precision type shufflenet_v2_x1_5 5.649552345275879
Inference half precision type shufflenet_v2_x2_0 5.355663299560547
Training double precision type mnasnet0_5 50.2386999130249
Training double precision type mnasnet0_75 80.66896915435791
Training double precision type mnasnet1_0 103.32422733306885
Training double precision type mnasnet1_3 154.6230697631836
Training double precision type resnet18 337.94031620025635
Training double precision type resnet34 677.7706575393677
Training double precision type resnet50 789.9243211746216
Training double precision type resnet101 1484.3351316452026
Training double precision type resnet152 2170.570478439331
Training double precision type resnext50_32x4d 877.37
Training double precision type resnext101_32x8d 3652.4944639205933
Training double precision type wide_resnet50_2 2154.6
Training double precision type wide_resnet101_2 4176.522083282471
Training double precision type densenet121 607.8699731826782
Training double precision type densenet169 744.6409797668457
Training double precision type densenet201 962.677731513977
Training double precision type densenet161 1759.772515296936
Training double precision type squeezenet1_0 164.3690824508667
Training double precision type squeezenet1_1 78.70647430419922
Training double precision type vgg11 1362.6095294952393
Training double precision type vgg11_bn 1387.2539138793945
Training double precision type vgg13 2006.0230445861816
Training double precision type vgg13_bn 2047.526364326477
Training double precision type vgg16 2702.2086429595947
Training double precision type vgg16_bn 2747.241234779358
Training double precision type vgg19_bn 3447.34
Training double precision type vgg19 3397.990345954895
Training double precision type mobilenet_v3_large 84.65698719024658
Training double precision type mobilenet_v3_small 29.8617
Training double precision type shufflenet_v2_x0_5 27.4073
Training double precision type shufflenet_v2_x1_0 48.322744369506836
Training double precision type shufflenet_v2_x1_5 82.224
Training double precision type shufflenet_v2_x2_0 141.7021369934082
Inference double precision type mnasnet0_5 12.988653182983398
Inference double precision type mnasnet0_75 22.4228
Inference double precision type mnasnet1_0 30.056486129760742
Inference double precision type mnasnet1_3 46.953935623168945
Inference double precision type resnet18 118.04479122161865
Inference double precision type resnet34 231.52336597442627
Inference double precision type resnet50 268.63497734069824
Inference double precision type resnet101 495.20
Inference double precision type resnet152 726.4922094345093
Inference double precision type resnext50_32x4d 291.47679328918457
Inference double precision type resnext101_32x8d 1055.
Inference double precision type wide_resnet50_2 690.69
Inference double precision type wide_resnet101_2 1347.5529861450195
Inference double precision type densenet121 224.35829639434814
Inference double precision type densenet169 268.94
Inference double precision type densenet201 343.51
Inference double precision type densenet161 635.866231918335
Inference double precision type squeezenet1_0 61.92759037017822
Inference double precision type squeezenet1_1 27.0094
Inference double precision type vgg11 462.3375129699707
Inference double precision type vgg11_bn 468.4495782852173
Inference double precision type vgg13 692.82
Inference double precision type vgg13_bn 703.3538103103638
Inference double precision type vgg16 924.4353818893433
Inference double precision type vgg16_bn 936.5075063705444
Inference double precision type vgg19_bn 1169.098300933838
Inference double precision type vgg19 1156.3771772384644
Inference double precision type mobilenet_v3_large 24.2356014251709
Inference double precision type mobilenet_v3_small 8.85490894317627
Inference double precision type shufflenet_v2_x0_5 6.360034942626953
Inference double precision type shufflenet_v2_x1_0 14.3054
Inference double precision type shufflenet_v2_x1_5 24.863481521606445
Inference double precision type shufflenet_v2_x2_0 43.8505744934082


Conclusion

The new graphics card has proven to be an effective solution for a number of work tasks. Thanks to its compact size, it is ideal for powerful SFF (Small Form Factor) computers. Also, it is notable that the 6,144 CUDA cores and 20GB of memory with a 160-bit bus makes this card one of the most productive on the market. Furthermore, a low TDP of 70W helps to reduce power consumption costs. Four Mini-DisplayPort ports allow the card to be used with multiple monitors or as a multi-channel graphics solution.


The RTX 4000 SFF ADA represents a significant advance over previous generations, delivering performance equivalent to a card with twice the power consumption. With no PCIe power connector, the RTX 4000 SFF ADA is easy to integrate into low-power workstations without sacrificing high performance.
바카라사이트 바카라사이트 온라인바카라