visit
Parks said the anode would reduce the cost of GM’s batteries well below $100 per kWh, which has been another battery industry holy grail threshold.The tenor of the battery race is driving companies to make big moves and big claims. Ford has said it is spending $11.5 billion on electric vehicles over a five-year period ending in 2022. VW says it will spend on EV and hybrid technology by mid-decade. Tesla says its battery and cars.“Tesla’s got a good jump, and they’ve done great things,” Parks told reporters in a pre-briefing Wednesday evening. “They’re formidable competitors … and there’s a lot of startups and everyone else invading this space. We’re not going to cede leadership there.”What GM is saying specifically is that by the middle of the decade, it will produce a second generation of its new lithium-ion EV battery, which it calls the Ultium. This battery will include a lithium-metal anode. It has already taken these pretty far, it says — achieving an impressive 500 charge-and-discharge cycles. Usually, EV batteries are thought to be ready for showtime when they can reliably do 1,000 charge-and-discharge cycles while retaining more or less the same capacity. Getting hundreds means it’s not quite there but is seriously robust.To questions yesterday from Barclays managing director Brian Johnson, Parks said the anode would reduce the cost of GM’s batteries well below $100 per kWh, which has been another battery industry holy grail threshold. Parks seemed in fact to say that the cost of the entire battery pack, including all the weight of the various filler and junk that surrounds the individual cells, would be well below $100 per kWh, which, if true, would be stunning.In response to a question I asked in the pre-briefing about the battery’s composition, Parks said the battery’s energy density would be 1,200 watt-hours per liter, a feat that experts I later spoke with had a hard time believing.The GM battery would differ from QuantumScape’s in that it is not solid state — it uses a liquid electrolyte. Parks said there is much work left to do scaling up the battery but that “we think we are at the leading edge of this curve.”Parks did not give a precise year in the mid-decade when all this will happen nor how many vehicles will feature the anode. In a statement, a company spokesman said there would be a “phase-in of many new technology areas related to EVs, including battery chemistry.”When I queried Jeff Sakamoto, a lithium-metal researcher at the University of Michigan, he said that using a liquid electrolyte with metallic lithium would make it “tough” to achieve any more than a few hundred charge-discharge cycles — “insufficient for EVs.” He said the rough 2025 time frame seemed optimistic. “To me, most of the underlying physics works out on paper, but there are still some knowledge gaps that must be bridged before any lithium solid-state battery can be considered a viable solution, especially for EVs.”Paul Albertus, a professor at the University of Maryland, said that GM would need to start production slowly because it will probably have to change the process it’s using to manufacture its current lithium-ion chemistry. “I think there’s also an aspect of starting small to see if any surprise field failures or challenges arise — put out a small vehicle run and wait a year or two and make sure no surprises happen, that type of thing,” he said.Albertus said he wouldn’t be surprised if GM totally misses the deadline and never produces a metallic lithium battery at all. But he added that he also wouldn’t be astonished if GM succeeds. “What makes me a little more optimistic is that we know there are some very large efforts working on this now,” he said. “… With automotive batteries growing so much in the coming 10 years, there’s now motivation to tackle something of the complexity of [metallic lithium]. There’s also been a lot of really good science finally getting done in the past few years, and that does help people innovate.”
Read behind a paywall at