Jan 01, 1970
# database.py class Database: def __init__(self, sql_connection_string): .... def query(self, sql): .... # user_service.py class UserService: def __init__(self, database): self.db = database def get_user(self, user_id): return self.db.query(f"SELECT * FROM users WHERE id = {user_id}") # main.py db = Database("sql_connection_string") user_service = UserService(db) user = user_service.get_user(123)
# top-level abstraction class BankingSystem: def __init__(self): self._account_manager = AccountManager() self._transaction_processor = TransactionProcessor() def create_account(self, acct_number: str, owner: str) -> None: self._account_manager.create_account(acct_number, owner) def process_transaction(self, acct_number: str, transaction_type: str, amount: float) -> None: account = self._account_manager.get_account(acct_number) self._transaction_processor.process(account, transaction_type, amount) # mid-level abstractions class AccountManager: def __init__(self): def create_account(self, acct_number: str, owner: str) -> None: def get_account(self, acct_number: str) -> 'Account': class TransactionProcessor: def process(self, account: 'Account', transaction_type: str, amount: float) -> None: # lower-level abstractions class Account(ABC): .... class Transaction(ABC): .... # concrete implementations class SavingsAccount(Account): .... class CheckingAccount(Account): .... class DepositTransaction(Transaction): .... class WithdrawalTransaction(Transaction): .... # lowest-level abstraction class TransactionLog: .... # usage focuses on the high-level abstraction cart = ShoppingCart() cart.add_item(Item("Book", 15)) cart.add_item(Item("Pen", 2)) total = cart.get_total()
class PaymentProcessor(ABC): @abstractmethod def process_payment(self, amount: float, card_no: str) -> bool: .... class StripeProcessor(PaymentProcessor): # stripe specific implementation def process_payment(self, amount: float, card_no: str) -> bool: .... class PayPalProcessor(PaymentProcessor): # paypal specific implementation def process_payment(self, amount: float, card_no: str) -> bool: ....
class UserManager: # user creation logic def create_user(self, username, email): ... class EmailService: # send welcome email logic def send_welcome_email(self, email): .... class NotificationService: # send sms notification def send_sms(self, username, email): ... # Usage user_manager = UserManager() email_svc = EmailService() user = user_manager.create_user("hacker", "[email protected]") email_svc.send_welcome_email("[email protected]")
# classes: PascalCase class UserAccount: pass # functions and variables: snake_case def calculate_total_price(item_price, quantity): total_cost = item_price * quantity return total_cost # constants: UPPERCASE_WITH_UNDERSCORES MAX_LOGIN_ATTEMPTS = 3 # private methods/variables: prefix with underscore class DatabaseConnection: def __init__(self): self._connection = None def _connect_to_database(self): pass
# Todo item - pydantic Model class TodoItem(BaseModel): id: Optional[int] = None title: str description: Optional[str] = None completed: bool = False todo_db = [<insert mock data>] @app.get("/todos", response_model=List[TodoItem]) async def get_todos(): # TODO: retrieve all todos @app.get("/todos/{todo_id}", response_model=TodoItem) async def get_todo(todo_id: int): # TODO: retrieve specific todo @app.post("/todos", response_model=TodoItem) async def create_todo(todo: TodoItem): # TODO: create todo @app.put("/todos/{todo_id}", response_model=TodoItem) async def update_todo(todo_id: int, todo: TodoItem): # TODO: update todo @app.delete("/todos/{todo_id}") async def delete_todo(todo_id: int): # TODO: delete todo
lời nhắc:
Use a Documentation Driven Development approach to write clear, concise docstrings for the following python function calculate_discount(price, discount_percentage) takes in - price (float), original price of the item. - discount_percentage (float), discount percentage range(0-100). returns - price after discount (float) raises - ValueError, when discount_percentage is out of range example - calculate_discount(100, 10) -> 10.0
phản ứng:
def calculate_discount(price: float, discount_percent: float) -> float: """ Calculate the discounted price of an item. Args: price (float): original price for the item. discount_percentage (float): discount percentage range(0-100). Returns: float: The price after applying the discount. Raises: ValueError: If discount_percentage is not between 0 and 100. Example: >>> calculate_discount(100, 20) 80.0 """ if not 0 <= discount_percent <= 100: raise ValueError("Discount percent must be between 0 and 100") discount_amount = price * (discount_percent / 100) return price - discount_amount
trường hợp thử nghiệm:
def is_palindrome(s: str) -> bool: """check if string is palindrome.""" return s == s[::-1] class TestPalindrome(unittest.TestCase): def test_palindrome(self): self.assertTrue(is_palindrome("racecar")) self.assertTrue(is_palindrome("A man a plan a canal Panama")) self.assertFalse(is_palindrome("hello")) self.assertTrue(is_palindrome("")) # Edge case: empty string
lời nhắc:
given the test case <insert test>, use Document Driven Development to write a function for TestPalindrome
phản ứng:
def is_palindrome(s: str) -> bool: """ Check if a string is a palindrome. A palindrome is a word, phrase, number, or other sequence of characters that reads the same forward and backward, ignoring spaces, punctuation, and capitalization. Args: s (str): The input string to check. Returns: bool: True if the input is a palindrome, False otherwise. Examples: >>> is_palindrome("racecar") True >>> is_palindrome("A man a plan a canal Panama") True >>> is_palindrome("hello") False >>> is_palindrome("") True """ # Remove non-alphanumeric characters and convert to lowercase cleaned = ''.join(char.lower() for char in s if char.isalnum()) # Compare the cleaned string with its reverse return cleaned == cleaned[::-1]
# Singleton pattern class DatabaseConnection: _instance = None def __new__(cls): if cls._instance is None: cls._instance = super().__new__(cls) # initialize database connection return cls._instance # Factory pattern class AnimalFactory: @staticmethod def create_animal(animal_type): if animal_type == "dog": return Dog() elif animal_type == "cat": return Cat() else: raise ValueError("Unknown animal type") # Observer pattern class Subject: def __init__(self): self._observers = [] def attach(self, observer): self._observers.append(observer) def detach(self, observer): self._observers.remove(observer) def notify(self): for observer in self._observers: observer.update() # Adapter pattern class LLMAdapter: def __init__(self, llm_service): self.llm_service = llm_service def generate_code(self, prompt): llm_response = self.llm_service.complete(prompt) return self.extract_code(llm_response) def extract_code(self, response): pass
# Code Review Checklist ## Functionality - [ ] Code performs the intended task correctly - [ ] Edge cases are handled appropriately ## Code Quality - [ ] Code follows project's style guide - [ ] Variable and function names are descriptive and consistent - [ ] No unnecessary comments or dead code ## Performance - [ ] Code is optimized for efficiency - [ ] No potential performance bottlenecks ## Security - [ ] Input validation is implemented - [ ] Sensitive data is handled securely ## Testing - [ ] Unit tests are included and pass - [ ] Edge cases are covered in tests ## Documentation - [ ] Functions and classes are properly documented - [ ] Complex logic is explained in comments
lời nhắc:
I need to implement a function to calculate the Fibonacci number sequence using a Document Driven Development approach. 1. Purpose: function that generates the Fibonacci sequence up to a given number of terms. 2. Interface: def fibonacci_seq(n: int) -> List[int]: """ generate Fibonacci sequence up to n terms. Args: n (int): number of terms in the sequence Returns: List[int]: fibonacci sequence """ 3. Key Functionalities: - handle input validation (n should always be a positive integer) - generate the sequence starting with 0 and 1 - each subsequent number is the sum of two preceding ones - return the sequence as a list 4. Implementation Details: - use a loop to generate the sequence - store the sequence in a list - optimize for memory by only keeping the last two numbers in memory if needed 5. Test Cases: - fibonacci_seq(0) should return [] - fibonacci_seq(1) should return [0] - fibonacci_seq(5) should return [0, 1, 1, 2, 3]
Để tìm hiểu sâu hơn về các nguyên tắc phát triển phần mềm, hãy xem cuốn sách giáo khoa cổ điển này: Kiến trúc sạch: Hướng dẫn về cấu trúc và thiết kế phần mềm cho thợ thủ công của Robert C. Martin.