Kuderedza computational kuomarara kwagara kuri chimwe chezvinangwa zvekutanga zve blockchain tekinoroji. Imwe nzira inoshanda yekuita izvi ndeyekudzikisa hupamhi hwemunda wekuverenga. Semuyenzaniso, maSNARK anoenderana nema elliptic curves anoita masvomhu muminda ine bit wides ye 256 kana kupfuura, ukuwo maSTARK akashanduka kubva pakushandisa 64-bit Goldilocks munda kuenda ku31-bit Mersenne31 uye BabyBear ndima. Kupfuura kugona kwenhamba dzepamusoro panguva yekushanda kwemodular, kudzikiswa kwakakosha kwehupamhi hwaita kuti Plonky2 iite mazana ekukurumidza kupfuura yakatangira, Plonky. Kutevera nzira iyi, munhu angashamisika: zvinokwanisika here kuseta hupamhi hwemunda kune 1, kunyanya ${\mathbb{F}}_{2}$? Chikwata cheUlvetanna (IRREDUCIBLE) chakapindura mubvunzo uyu mubepa ravo rekutsvagisa rakanzi Succinct Arguments pamusoro peTowers of Binary Fields.
Kubva pakaburitswa, Binius akawana kutariswa kwakakosha munharaunda yeZK (Zero-Knowledge). Chikwata cheLambdaClass chapa ongororo dzakati wandei [4][5][6], uye Vitalik Buterin akapa tsananguro inowanika.
Yakareruka Binary Field is ${{\mathbb{F}}{2}}$
, iyo ine zvinhu zviviri chete ${0,1}$
, ine ma operation akaitwa modulo 2: kuwedzera kunoenderana ne bitwise XOR, uye kuwanda kunoenderana ne bitwise. UYE. Nekusarudza polynomial isingachinjiki $m(x) = x^{2} + x + 1$ over ${{\mathbb{F}}{2}}$
, tinogona kugadzira ndima ${{\mathbb{F}}_{{2^{2}}}}$
, apo zvinhu zvinenge zvasara zvepolynomials edhigirii zvakanyanya 1, $r(x) = ax + b$ (with $a, b \in {0, 1}$
).
Iko Kunyatsoitwa kweTower Extensions kunotevera: Kutanga, ${{\tau }{0}} = {{\mathbb{F}}{2}}$
; Zvadaro, ${{\tau }{1}} = \frac{{{\mathbb{F}}{2}}[{{x}{0}}]}{(x{0}^{2} + {{x}_{0}} + 1)}$
; Zvadaro, ${{\tau }{k}} = \frac{{{\mathbb{F}}{2}}[{{x}{k-1}}]}{(x{k-1}^{2} + {{x}{k-1}}{{x}{k-2}} + 1)}$.
Kubva pakuvakwa kwekuwedzerwa kwemunda, zviri pachena kuti mawedzero anogutsa hukama hunotevera: ${{\tau }{0}} \subset {{\tau }{1}} \subset {{\tau }{2}} \subset \cdots \subset {{\tau }{m}}$
. Kune $k \ge 0$
, kuwedzera kwemunda kunogonawo kuratidzwa nenzira yakananga yemhete se: ${{\tau }{k}}={{{\mathbb{F}}{2}}[{{x}{0,}}\ldots ,{{x}{k-1}}]}/{\left( x_{0}^{2}+{{x}{0}}+1,\ldots ,x{k-1}^{2}+{{x}{k-2}}{{x}{k-1}}+1 \right)}$.
Zvichienderana nekushandiswa uku, kuwedzera kwakasiyana kunogona kuwanikwa sezvinotevera:
${{\tau }_{0}}=\left{ 0,1 \right}$
${{\tau }{1}}=\left{ 0+0{{x}{0}},1+0{{x}{0}},0+1{{x}{0}},1+1{{x}{0}} \right}$, or ${{\tau }{1}}=\left{ {{\tau }{0}},0+1{{x}{0}},1+1{{x}_{0}} \right}$
$${{\tau }{2}}=\left{ \begin{align} & 0+0{{x}{0}}+0{{x}{1}}+0{{x}{0}}{{x}{1}},1+0{{x}{0}}+0{{x}{1}}+0{{x}{0}}{{x}{1}},0+1{{x}{0}}+0{{x}{1}}+0{{x}{0}}{{x}{1}}, \ & 1+1{{x}{0}}+0{{x}{1}}+0{{x}{0}}{{x}{1}},\ldots ,1+1{{x}{0}}+1{{x}{1}}+1{{x}{0}}x \ \end{align} \right}$$, Or ${{\tau }{2}}=\left{ {{\tau }{1}},0+0{{x}{0}}+1{{x}{1}}+0{{x}{0}}{{x}{1}},\ldots ,1+1{{x}{0}}+1{{x}{1}}+1{{x}{0}}{{x}{1}} \right}$
Kubva muZvinhu Zviri Mundima Yakawedzerwa Zviripachena kuti chinhu ${{b}{0}}{{b}{1}}{{b}{2}}\ldots {{b}{{{2}^{k}}-1}}$
yakabva pa ${{\tau }{k}}$
, inogona kuderedzwa kuita zvikamu zviviri zvinoti: ${{b}{lo}} + {{x}{k-1}}{{b}{hi}}$ (where ${{b}{lo}}, {{b}{hi}} \in {{\tau }{k-1}}$)
. Semuyenzaniso, $01111 = 11001010 + 1000111 \times {{x}{3}}$, where $11001010, 10001111 \in {{\tau }{2}}$
.
Nekuwora kwadzokorodza, tinogona pakupedzisira kutaura: $$01111=1+{{x}{0}}+{{x}{2}}+{{x}{2}}{{x}{1}}+{{x}{3}}+{{x}{2}}{{x}{3}}+{{x}{0}}{{x}{2}}{{x}{3}}+{{x}{1}}{{x}{2}}{{x}{3}}+{{x}{0}}{{x}{1}}{{x}{2}}{{x}{3}}$$
Pamusoro pezvo, ye $k > 0$
, sezvo $x_{k}^{2} = {{x}{k}}{{x}{k-1}} + 1$
, kuwedzera nekuwanda kunogona kuitwa nemazvo mu iyo binary yakawedzerwa munda.
[1]
[2]
[3]
[7]